
CompSci 101
range function

KISS Principle

• Think of the non-computing context for any word/terms

• KISS model
• Work smarter, not harder!!

• “Good programmers are simply good designers.”
• -Dr. Washington

• Design first and always!

• Importance of reusability

• USE PYTHON TUTORS IF YOU HAVE QUESTIONS!

for loops

• What about larger numbers?

• range(stop)
• 0 up to (not including) stop

• range(start, stop)
• Specify start value (increment by 1)

• range(start, stop, step)
• Specify step value

CompSci 101
Accumulators

Why use loops?

• Repetition
• Keeping a running total (counter)

• Summing (other repetitive calculations)

• Accumulators
• “Accumulate”-acquire an increasing number of quantity of.

• Rules for accumulators
• Must initialize the “running total”

• Must not initialize “inside the loop”

• Accumulator must increase the total with each loop iteration

Example: 6.5-Accumulator Pattern

Another way to use accumulators

def square(x):

'''raise x to the second power'''

runningtotal = 0

for counter in range(x):

runningtotal = runningtotal + x

return runningtotal

def square(x):

'''raise x to the second power'''

runningtotal = 0

for counter in range(x):

runningtotal += x

return runningtotal

CompSci 101
Traversing and accumulating

strings

Print each character in a string

Can this be simplified?
What about printing the characters in reverse order?

Accumulators with Strings

• How is “+” used with strings?
• Concatenation

• result = “string1” + “string2”

• Still require initialization
• Empty string (“”) instead of 0

• Still “acquiring/increasing quantity.”

Example: 9.4-Accumulator Patterns with
Strings
def removeVowels(s):

vowels = "aeiouAEIOU"
sWithoutVowels = ""
for eachChar in s:

if eachChar not in vowels:
sWithoutVowels = sWithoutVowels + eachChar

return sWithoutVowels

print(removeVowels("compsci"))
print(removeVowels("aAbEefIijOopUus"))

Why using “not in” instead of “in”?

• KISS

• Which is simpler to use?
• What’s required to use “in”?

• What’s required to use “not in”?

• Which is simpler to design/implement?

CompSci 101
Traversing lists

Which is better to traverse list?

fruits = ["apple", "orange", "banana", "cherry"]

for position in range(len(fruits)): # by index

print(fruits[position])

fruits = ["apple", "orange", "banana", "cherry"]

for afruit in fruits: # by item

print(afruit)

Remember lists are mutable…

numbers = [1, 2, 3, 4, 5]

print(numbers)

for i in range(len(numbers)):

numbers[i] = numbers[i] ** 2

print(numbers)

