Compsci 101
DeMorgan’s Law, Short circuiting,
Images, Tuples
Live Lecture

Announcements

Assign 2 due today!
APT-4 due Thursday, March 11
Lab 5 on Friday
Exam 1 — Regrade request deadline 5pm TODAY!
Exam 2 prep
* Old test 2 links (Calendar-today’s date(3/4))

No class next Tues/Wed-Wellness Days
 Office/consulting hours affected

APT Quiz 1 tomorrow...

APT Quiz 1 is 3/5 8AM -3/8 11PM — finish by 11pm
There are two parts — each part is 1.5 hours
Pick a start time for each part,
« Once you start a part, You have 1.5 hours
* |f you get accommodations, you get those
4 APTs to solve (2 in each part)
« Take parts 1 and 2 on same day or different days

Start APT Quiz on Sakail!

See old APT Quiz problems so you can practice
* On APT page — NOT FOR CREDIT

Computer Scientists to Know
Victoria Chavez

B.S.-CS, Hispanic Studies
. Victoria developed an app to help people find
M _ S = C S E d u C a‘t | O n stores that accept food stamps and works to make

CS more accessible to students with disabilities.
Software Engineer
 Twitter, Microsoft

K-16 CS educator
 University of Rhode Island

SNAPYy creator

Victoria C. Chavez
Computer Scientist

‘4 #CSforSocialJustice

L Is for ...

Loops

* While, For, Nested — Iteration!
Library

* \Where we find APIls and Implementations
Logic

* The Boolean Heart of ...

LinuxX

* The OS that runs the world?

PETD

DeMorgan’s Law
Short Circuiting
Images & Tuples
« Start today, finish next class
Maybe an APT?

Review: Index without error?

lst = ["a","b","c","a"]

dex = lst.index("b")
lst.index("b") is 1
lst.index("B") ERROR!
lst.index("B") ??? -1

« Use while loop to implement index.
« What is the while loop’s Boolean condition?
dex = ©
while BOOL_ CONDITION:
dex += 1

Review: DeMorgan’s Law

* While loop stopping conditions, stop with either:
e 1st[dex] == elm
 dex >= len(1lst)

* While loop needs negation: DeMorgan's Laws
not (A and B) equivalentto (not A) or (not B)
not (A or B) equivalentto (not A) and (not B)

while not (1lst[dex] == elm or dex >= len(lst)):

while lst[dex] != elm and dex < len(lst):

TPS: DeMorgan’'s Law BEERE

Fill in the

A B not (A and B) | (not A) or (not B)
True True False False
True | False True True
False | True True True
False | False True True
A B not (A or B) | (not A) and (not B)
True True False False
True | False False False
False | True False False
False | False True True

WOTO-1: Will this work??
http:/ /bit.ly /101s21-0304-1

* |f not, what input will not work?

WOTO-1: Will this work?
http:/ /bit.ly/101s21-0304-1

* If not, what input will not work?

def index(1lst, elm):

dex = 0

while lst[dex] != elm and dex < len(1lst):
dex += 1

if dex < len(1lst):
return dex

else:
return -1

Short Circult Evaluation

Short circuit evaluation, these are not the same!

while lst[dex] != elm and dex < len(1lst):

while dex < len(1lst) and 1lst[dex] != elm:

As soon as truthiness of expression known
« Stop evaluating
* In (A and B), if Ais false, do not evaluate B

Example: To sit in the student section of a game

you need to “have a ticket” and “be a student”

12

Python Logic Summarized

 AandB is True only when A'is True and B is True
 AorBis False only when A is False and B is False

« Short-circuit evaluation of Aor B ?
e |f Ais true, do not evaluate B

A B Evaluate B with and? Evaluate B with or?
True True Yes No
True False Yes No
False True No Yes

False False No Yes

WOTO-2 — Boolean Logic
http:/ /bit.ly /101s21-0304-2

* In your groups:
« Come to a consensus

Example: Images

s

WOTO-3 — Images
http:/ /bit.ly/101s21-0304-3

* In your groups:
« Come to a consensus

Review SimpleDisplay.py

» Access to PIL and Image module
« What type is Img?
* https://pillow.readthedocs.io/en/latest/

from PIL import Image

» 1if __name__ == '_main__':
img = Image.open("images/bluedevil.png")
img.show()

print("width %d, height %d" % (img.width, img.height))

17

https://pillow.readthedocs.io/en/latest/

Review: Images

 Image is a collection of pixels
« Organized in rows: # rows is image height
« Each row has the same length: image width

* Pixels addressed by (X, y) coordinates
« Upper-left (0,0), Lower-right (width-1,height-1)
 Jypically is a single (x, y) entity: tuple

 Tuple is immutable, indexed sequence (a, b, c)

Review: Tuple: What and Why?

« Similar to a list in indexing starting at O
« Can store any type of element
« Can iterate over
 Immutable - Cannot mutate/change its value(s)
* Efficient because it can't be altered
« Considerx = (5,6) and y = ([1,2],3.14)
 Think: Whatis x[0] = 77y[0] .append(5) "

APT 4 - TxMsg

Problem Statement

Strange abbreviations are often used to
write text messages on uncomfortable
mobile devices. One particular stratepy
for encoding texts composed of
alphabetic characters and spaces 1s the
following:

e Spaces are mamntained, and each
word 1s encoded individually. A
word 1s a consecutive string of
alphabetic characters.

Specification

filename: TxMsg.pyv
def getMessage (original):

return String that is "textized' wversion

of String parameter original
T FT PP

yvou write code here

e If the word 15 composed only of vowels, it 15 written exactly as in the original message.

o If the word has at least one consonant, write only the consonants that do not have another consonant
immediately before them. Do not write any vowels.

® The letters considered vowels in these rules are 'a’, 'e’, '1', 'o' and 'u'. All other letters are considered

consonants.

For instance, "ps 1 love u" would be abbreviated as "p 1 Iv u" while "please please me" would be abbreviated as
"ps ps m". You will be given the original message in the string parameter criginal. Return a string with the
message abbreviated using the described strategy.

Example

1. "text message"

Return=s "tx m=g"

WOTO-4 — TxMsg
http:/ /bit.ly /101s21-0304-4

* In your groups:
« Come to a consensus

Debugging APTs: Going green

« TxMsg APT: from ideas to code to green

« What are the main parts of solving this problem?
« Transform words in original string

» Abstract that away at first
» Finding words in original string

* How do we do this?

def getMessage (original) :
ret = []

ret.append(transform(word))
return ret

Debugging APTs: Going green

« TxMsg APT: from ideas to code to green

« What are the main parts of solving this problem?
« Transform words in original string

» Abstract that away at first
» Finding words in original string

* How do we do this?

def getMessage (original) :
ret = []
for word in original.split() :

ret.append(transform(word))
return ret

Debugging APTs: Going green

« TxMsg APT: from ideas to code to green

« What are the main parts of solving this problem?
« Transform words in original string

» Abstract that away at first
» Finding words in original string

* How do we do this?

def getMessage (original) :
ret = []
for word in original.split() :

ret.append(transform(word))
return ret # join?

Write helper function transform

* How?

« Use seven steps
» Work an example by hand

Transform word - Step 1: work small example by hand

« Word is “please”
Letter is ‘p’, YES
answer is “p”

» Letteris I, NO
» Letteris ‘e’, NO
« Letteris ‘a’, NO
» Letteris’'s’, YES
answer is “ps”

Letter is ‘e’, NO

Step 2: Describe what you did

Word is “please”, create an empty answer
Letter is ‘p’, consonant, no letter before, YES
Add ‘p’ to answer

_etter is ‘', consonant, letter before “p”, NO
_etter is ‘€', vowel, letter before TI', NO
_etter is ‘a’, vowel, letter before ‘€', NO
_etter is ‘s’, consonant, letter before ‘a’, YES
Add ‘s’ to answer

Letter is ‘e’, vowel, letter before ‘s’, NO
Answer is “ps”

Step 3: Find Pattern and generalize

Need letter before, pick “a”
answer is empty

for each letter in word

If it is a consonant, and the letter before is a
vowel, then add the letter to the answer

This letter is now the letter before
return answer

Step 4 — Work another example

Word is message

_etter is ‘m’, before is ‘@’, add ‘m’ to answer
_etter is ‘e’, before is ‘m’, NO

_etter is ‘s’, before is ‘e’, add ‘s’ to answer
 etteris ‘s’, before is ‘s’, NO

_etter is ‘a’, before is ‘s’, NO

_etter is ‘g’, before is ‘a’, add ‘g’ to answer
_etter is ‘e’, before is ‘g’, NO

Answer is “msg” WORKS!!

Step 5: Translate to Code

([P L)

Letter before is “a # start with a vowel
answer is empty

for each letter in word

Step 5: Translate to Code

([P L)

Letter before is “a # start with a vowel

before = ‘@’

answer is empty

answer = [] # or this could be an empty string
for each letter in word

for ch in word:

32

Step 5: Translate to Code (code)

#If It Is a consonant, and the letter before Is a
#vowel, then add the letter to the answer

#This letter is now the letter before

return answer

STO

* You finish
* May need to debug

> H

Why use helper function 'transform™?

Structure of code is easier to reason about
* Harder to develop this way at the beginning

« Similar to accumulate loop, build on what we
Know

We can debug pieces independently
« What if transform returns ™ for every string?

« Can we test transform independently of
getMessage”?

