
Compsci 101

Dictionaries

Live Lecture



Announcements

• Assign 3 Transform due Today! March 18

• APT-5 due Tues, March 23

• Assign 4 Hangman out today!

• Sakai reading quiz

• Lab 7 Friday

• Exam 2-DO NOT DISCUSS!



PFTD

• Dictionaries



Dr. Amy J. Ko

• Ph.D., Human-Computer 
Interaction
• Carnegie Mellon University

• B.S., CS, Psychology
• Oregon State University

• Professor, Informatics Program 
Chair

• University of Washington, 
Seattle

• Director, Code & Cognition 
Lab
• Information School, School of CS 

& Engineering, and College of 
Education

4



Sandwich Bar

5



Sandwich Bar Example

• available = [ "cheese", "cheese", "cheese", 

"tomato" ]

• orders = [ "ham ham ham", "water", "pork", 

"bread", "cheese tomato cheese", "beef" ]



Sandwich Bar Example

• available = [ "cheese", "cheese", "cheese", 

"tomato" ]

• orders = [ "ham ham ham", "water", "pork", 

"bread", "cheese tomato cheese", "beef" ]

• Returns 4

• Can make “cheese tomato cheese”

• Ignore any duplicates!



WOTO-1 SandwichBar
http://bit.ly/101s21-0318-1



Another Trip to the SandwichBar

• Use sets to solve this!

• Idea

• You would need to write the function canmake

• What type does it return?

• What set operation could you use?

for dex in range(len(orders)):

if canmake(orders[dex], available):

return dex



Given two lists A and B

• Determine if all elements in A are also in B

• Examine each element in A

• If not in B? False

• After examining all elements? True

• Think: Could we use sets instead?



Given two sets A and B

• Determine if all elements in A are also in B

• if len(A & B) == len(A)

• if len(A – B) == 0

A B



VenmoTracker



Motivation for Dictionary

http://bit.ly/venmotracker

• If Harry pays Sally $10.23, 

• "Harry:Sally:10.23" then Harry is out $10.23

• How do we extract sender, receiver, amount?

• How to process

• In Python

http://bit.ly/venmotracker


Tools We’ve Used Before

• Keep track of every person we see

• Use a list

• Keep track of net worth: money in, money out

• Use a parallel list

• Maintain invariant: names[k] <-> money[k]

• kth name has kth money



WOTO-2 Venmo Tracker
http://bit.ly/101s21-0318-2



Some APT details

• Given a person's name, if we haven't seen it…

• Append to names, append 0 to money

• Why must we do both? Invariant, update!

• Find index of person's name in names

• Update corresponding entry in money

• Use $$ * 100 to avoid floating point issues

• Sorted names: sorted(…)

• Returns a sorted list of the passed in sequence



Seen parallel lists before

• Solution outlined is reasonable, efficient?

• How long does it take to find index of name?

• It depends. Why?

• list.index(elt) or elt in list – fast?

• What does "fast" mean? Relative to what?

• Such a common idiom most languages support 
fast alternative: dictionary aka map aka hash …



Dictionaries….?



WOTO-3 Dictionaries
http://bit.ly/101s21-0318-3

• In your groups:

• Come to a consensus



Short Code and Long Time

• See module WordFrequencies.py

• Find # times each word in a list of words occurs

• We have tuple/pair: word and word-frequency

• Think: How many times is words.count(w) called?

• Why is set(words) used in list comprehension?



WordFrequencies with Dictionary

• If start with a million words, then…

• We look at a million words to count # "cats"

• Then a million words to count # "dogs"

• Could update with parallel lists, but still slow!

• Look at each word once: dictionary!

• Key idea: use word as the "key" to find  
occurrences, update as needed

• Syntax similar to counter[k] += 1



Using fastcount

• Update count if we've seen word before

• Otherwise it's the first time, occurs once



Assignment 4: Hangman

• We give you most of the functions to implement

• Partially for testing, partially for guiding you

• But still more open ended than prior assignments

• If the doc does not tell you what to do:

• Your chance to decide on your own!

• Okay to get it wrong on the first try

• Discuss with TAs and friends, brainstorm!

• Remember: sorted(…) – cover next lecture


