Compsci 101
Dictionaries
Live Lecture

venmo

The easiest way to
pay your friends.

Announcements

Assign 3 Transform due Today! March 18
APT-5 due Tues, March 23

Assign 4 Hangman out today!
« Sakai reading quiz

Lab 7 Friday

Exam 2-DO NOT DISCUSS!

PETD

* Dictionaries

Dr. Amy J. Ko

Ph.D., Human-Computer
Interaction

« Carnegie Mellon University

B.S., CS, Psychology

» Oregon State University

Professor, Informatics Program
Chair

 University of Washington,
Seattle

Director, Code & Cognition
Lab

e |Information School, School of CS
& Engineering, and College of
Education

Sandwich Bar

APT: SandwichBar Search

Problem Statement

Class
It's time to get something to eat and I've
come across a sandwich bar. Like most
PEDPIE, 1 prefer certain types of filename: SandwichBar.py
sandwiches. In faCt? I kE‘:Ep a list of the def whichCrder(available, orders):
types of sandwiches I like. o

return zero-based index of first
The sandwich bar has certain ingredients e e
available. I will list the types of sandwiches ::azvi?aﬁi Eiﬂaclii Sirzﬁ_ﬂ ;Egig;ents

I like in order of preference and buy the mmn

first sandwich the bar can make for me. In
order for the bar to make a sandwich for
me, it must include all of the ingredients I
desire.

you write code here

Given available, a list of Strings/ingredients the sandwich bar can use, and a crders, a list of Strings that represent
the types of sandwiches I like, in order of preference (most preferred first), return the 0-based index of the sandwich I
will buy. Each element of crders represents one type of sandwich I like as a space-separated list of ingredients in the
sandwich. If the bar can make no sandwiches I like, return -1.

Sandwich Bar Example

» available =["cheese", "cheese", "cheese",
"tomato"]

» orders = ["ham ham ham", "water", "pork",
"bread", "cheese tomato cheese", "beef" |

Sandwich Bar Example

available = ["cheese", "cheese", "cheese",
"tomato"]

orders = ["ham ham ham", "water", "pork",
"bread", "cheese tomato cheese", "beef" |

Returns 4
Can make “cheese tomato cheese”

Ignore any duplicates!

WOTO-1 SandwichBar
http:/ /bit.ly/101s21-0318-1

Another Trip to the SandwichBar

* Use sets to solve this! g smouwn i 838

* |dea

for dex in range(len(orders)):
i1f canmake (orders[dex], available):
return dex

 You would need to write the function canmake
« What type does it return?
« What set operation could you use?

Given two lists A and B

 Determine if all elements in A are also in B

e Examine each element in A
e [f notin B? False

« After examining all elements? True

* Think: Could we use sets instead?

Glven two sets A and B

 Determine if all elements in A are also in B
* if len(A & B) == len(A)
* if len(A - B) == 0

9

)
ol Pl

APT: VenmolIracker

Problem Statement
Specification

You've been asked to help manage

reports on how often people spend

money using Venmo and whether they | filename: VenmoTracker.py

Teceive H?‘Dre money than the}' P_E'}F def networth(transactions):

out. The mput to your program is a e

list of transactions from Venmo_ Each return list of strings based on tramnsactions,
- ; which is also a list of strings

transaction has the same form: -

"from:to:amount” Where fmm 1s the

name of the person paying amount # you write code here

= £
dollars to the person whose name is zeturn [
to. The value of amount will be a

valid float with at most two decimal places.

Return a list of strings that has each person who appears in any transaction with the net cash flow
through Venmo that person has received. Every cent paid by the person to someone else 1s a pay-out and
every cent received by a person 1s a pay-in. The difference between pay-out and pay-in 1s the cash flow
recetved. This will be negative for each person who pays out more than they get via pay-in. See the
examples for details.

The list returned should be sorted by name. Strings in the list returned are in the format "name:netflow"
where the netflow 1s obtained by using str(val) where val 1s a float representing the net cash flow for
that person.

Store money as int values, multiplying by 100 and dividing by 100 as needed for processing input
and output, respectively.

Motivation for Dictionary

http://bit.ly/venmotracker
« If Harry pays Sally $10.23,
« "Harry:Sally:10.23" then Harry is out $10.23
« How do we extract sender, receiver, amount?
* How to process

* In Python venmo

The easiest way to
pay your friends.

http://bit.ly/venmotracker

Tools We've Used Before

« Keep track of every person we see
« Use a list
« Keep track of net worth: money in, money out
* Use a parallel list
« Maintain invariant: names [k] <-> money[k]

« k" name has kth money
/0

INVARIANT

WOTO-2 Venmo Tracker
http:/ /bit.ly/101s21-0318-2

Some APT detalls

Given a person's name, if we haven't seen it...

* Append to names, append 0 to money

* Why must we do both? Invariant, update!

Find index of person's name in names

« Update corresponding entry in money

Use $$ * 100 to avoid floating point issues
Sorted names: sorted(...)

« Returns a sorted list of the passed in sequence

Seen parallel lists before

« Solution outlined is reasonable, efficient?
« How long does it take to find index of name?
* |t depends. Why?

e list.index(elt) orelt in list —fast?
 \What does "fast" mean? Relative to what?

« Such a common idiom most languages support
fast alternative: dictionary aka map aka hash ...

Dictionaries....”?

WOTO-3 Dictionaries
http:/ /bit.ly/101s21-0318-3

* In your groups:
« Come to a consensus

Short Code and Long Time

« See module WordFrequencies.py
* Find # times each word in a list of words occurs
* We have tuple/pair: word and word-frequency

def slowcount(words):
pairs = [(w,words.count(w)) for w in set(words)]
return sorted(pairs)

* Think: How many times is words . count (w) called?
 Why is set (words) used in list comprehension?

WordFrequencies with Dictionary

* [f start with a million words, then...

« We look at a million words to count # "cats"
* Then a million words to count # "dogs"
« Could update with parallel lists, but still slow!
* Look at each word once: dictionary!

 Key idea: use word as the "key" to find
occurrences, update as needed

« Syntax similar to counter[k] += 1

Using fastcount

« Update count if we've seen word before
e Otherwise it's the first time, occurs once

def fastcount(words):

d = {}
for w 1n words:
if w 1n d:
dlw] += 1
else:
dlw] =1

return sorted(d.items())

Assignment 4. Hangman

We give you most of the functions to implement

 Partially for testing, partially for guiding you
But still more open ended than prior assignments
If the doc does not tell you what to do:

* Your chance to decide on your own!
« Okay to get it wrong on the first try

e Discuss with TAs and friends, brainstorm!
Remember: sorted(...) — cover next lecture

