
J. &i’oZ. Biol. (1982) 162, 705-708 

An Improved Algorithm for Matching Biological Sequences 

The algorithm of Waterman et al. (1976) for malchirlg biological seyuences was 
modified under some limitations to be accomplished in essentially MN steps, instead 
of the M’lV steps necessary in the original algorithm. The limitations do not 
seriously reduce the generality of the original method, and the present method is 
available for most practical uses. The algorithm can be executed on a small computer 
with a limited capacity of core memory. 

The currently used major algorithms for aligning biological sequences (protein and 
nucleic acid sequences) stem from the pioneering work of Needleman & Wunsch 
(1970). Needleman-Wunsch’s method has also been applied to statistical tests of 
relatedness between a pair of sequences (Barker & Dayhoff, 1972; Doolittle, 1981). 
Sellers (1974) proved that evolutionary distances obtained with a similar algorithm 
to that of Needleman & Wunsch satisfy metric conditions. Sellers’ metric was later 
generalized by Waterman et al. (1976) so that deletions/insertions (gaps) of any 
length are allowed. Inclusion of multiple-sized gaps is feasible for comparing 
biological sequences since a long gap can be produced by a single mutational event. 
This situation is incorporated into the method of Waterman et al. (1976) by assigning 
a weight wk I kw, to a gap of length k, whereas the gap weight is confined to wk = kw, 
for all k values in the method of Needleman, Wunsch and Sellers. However, the 
algorithm of Waterman et al. (1976) has adrawback in that it takes a large number of 
computational steps of the order of M2N compared to the MN steps of 
Needleman-WunschSellers’ algorithm, where M and N (M 2 N) are the lengths of 
the proteins or nucleic acids under comparison. This is a particularly serious 
problem when calculations are made on a low-speed small computer. 

In this letter I present a new algorithm which allows multiple-sized gaps but runs 
in essentially MN steps if the gap weight has a special form of w,=uk+v (~2 0, 
v 2 0). This form of gap weight has usually been used in computer systems that adopt 
the matching algorithm of Waterman et al. (Smith et al., 1981; Kanehisa, 1982). 

(a) Algorithm 

Let the two sequences be A=a,a, . aM andB=b,b,. . b,. Aweightd(a,, b,)is 
given to an aligned pair of residues a,,, and b,. Usually, d(a,, b,) i0 if a,=b,, and 
d(a,, b,) > 0 if a,,,# b,. The algorithm of Waterman et al. (1976) generates a distance 
matrix D,,,, by an induction as follows: 

D m,n =a [D,- l,n- 1 +d(a,, b,), P,, n, Q,, “1, (1) 

where 

P,,“= Min [D,-,,.+?~I~] (2) 
1 ck<m 
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and 
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Although P,,, (or Q,,,) appears to be calculated in m - 1 (or n- 1) steps, it can be 
obtained in a single step according to the following recursion relations: 

P,,.=Min lDm-l,n+~:l, Min (D,-,,.+ul,)] 
2sksm 

=Min [Dm-I,n+~~l, Min (D,-,-k,n+U~k+l)~ 
lsksm-1 

=Min [Dm-l,n+zrl. Min (D,_,-,,.+u!,J+u] 
lsksm-1 

=Min [D,-l~.+u:l, P,p,,,+u] (4) 

and 

Q,,,+=Min lDm,n-l +UQ, Qm,n-l +ul. (5) 
Thus, the induction is completed in MN steps, each of which consists of choosing the 
smallest of three numbers for D,,,, and the smaller of two numbers for P, n or Q, n. 

At the beginning of the induction, one may set D,, o = P,, ,, = u), ( 15 m 2 M), and 
Do, n = QO. n = UJ, (1 In 5 N). Alternatively, D,, 0 = P,, ,, = 0 and D,, n = Qo, n = UI,, or 
D,,, = P,, 0 = 0 and Do,, = QO,n = 0 may be chosen in searching for the most locally 
similar subsequence (Sellers, 1980; Smith & Waterman, 1981; Goad & Kanehisa, 
1982). 

In a computer program, not all the elements of D,,., P,,, and Q,,” need be 
memorized; two one-dimensional arrays and one variable are sufficient to store 
temporary values of these quantities. This feature is also useful for executing the 
algorithm on a small computer equipped with a small size of core memory. 

The optimally matched alignments are available by backtracking guided by the 
“direction matrix” em,n, whose element is a three-bit binary number indicating the 
paths through which the minimum value of D,,, is chosen (Smith et al., 1981; Goad & 
Kanehisa, 1982). The complete set of em,n values is obtained by running the above 
algorithm twice, first calculating e, -k,n (k 2 0) and second e, -k,m exchanging the 
column/row assignments of A and B, and finally taking bit-to-bit logical OR values 
of the first em,n and the second P,,,. 

Figure 1 shows an example, in which e,,, values obtained after the first run of the 
algorithm are shown in (a), and the final em,n values in (b). Figure l(a) and (b) also 
demonstrates D,,, values and Q,,, values, respectively. Note that the second run 
converts the underlined em,n values from one to five, although they do not contribute 
to the traceback (indicated by arrows) in this example. 

The above-mentioned algorithm can be further generalized if wk has the follow- 
ing form: wk = u,k+~ (1 I k<K,). wk = u,(k-K,)+u>,l (K, < k I K,), . ., 
wk=uL (k-K,)+z+,~ (K,<k), where u1 terms are constants of uO>ul >u2 
> uL 2 0. The simplest case of interest is L = 1 and u i = 0, i.e. ulk is a linear function of 
k in the range 1 I k 5 K,, while it is a constant ( = ~11~~) for all k values greater than 
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FIG. 1. An example of operation of the algorithm. (a) D,,, (Arabic), and P,,, (Italic) obtained after the 
first run. (b) Q,,. (Arabic), and the completed em,” (Italic). The underlined em,n values are altered by the 
second run. The arrows indicate the paths of backtracking. To avoid going the wrong way, such as in the 
way shown by broken arrows, we always go straight ahead, if possible, at each branch point. The weight 
values used are d(a,, b,) =0 if a,,,= b,, d(a,, b,)=lO if a,#b,, and u-,=lOk+I2. 

K 1. Such an assignment of uJk seems adequate for alignment of sequences with large 
gaps, e.g. alignment of Halococcus morrhuae 5 S RNA (Luehrsen et al., 1981) against 
usual prokaryotic or eukaryotic 5 S RNAs. When I, = 1, the recursion relations for 
P,, n are derived as : 

Pi,.=Min [Dm-l,n+z~~lr Pz-,,,+u,], (6) 

PA,.=Min [Dm-K,-I,n+~~K,+~l, C!-I,,+~,l (7) 
and 

f’,,.=Min [Pz,n, f’,!,..l. (8) 
The relations for Q,,, are obtainable analogously. These relations are also easily 
extended for L 2 2. 

To execute the above procedure on a computer, one needs to prepare a queue 
memory with M x (K,+ 1) cells storing Dm,n-k (O<k< KL) values, in addition to 
(L + 1) one-dimensional arrays and L + 1 variables which store temporary values of 
Pi,, and Qk,. (Z=O,1,2, . . ., L). Th e number of computational steps is roughly 
proportional to (L + 2)MN, if N $ K,. 

We cannot a priori determine appropriate values for the weights and parameters 
involved in the algorithm, but they may be estimated by a dynamic optimization 
procedure (Sankoff et al., 1976). The weights thus obtained are useful for examining 
previously unknown relatedness between a pair of sequences. Such an investigation 
on the interrelation of4.5 S RNA sequences is reported elsewhere (Takeishi & Gotoh, 
1982). 
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