Section: Properties of Context-free Languages

Which of the following languages are CFL?

- \(L = \{a^n b^n c^j \mid 0 < n \leq j\} \) NOT CFL
- \(L = \{a^n b^j a^n b^j \mid n > 0, j > 0\} \) NOT CFL
- \(L = \{a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0\} \) CFL
- \(L = \{a^n b^j a^j b^n \mid n > 0, j > 0\} \) CFL
Pumping Lemma for Regular Language’s: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \geq m$, $w = xyz$ such that

- $|xy| \leq m$
- $|y| \geq 1$
- for all $i \geq 0$, $xy^i z \in L$
Pumping Lemma for CFL’s Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \geq m$, we may partition $w = uvxyz$ such that:

- $|vxy| \leq m$, (limit on size of substring)
- $|vy| \geq 1$, (v and y not both empty)

For all $i \geq 0$, $uv^i xy^i z \in L$

- **Proof: (sketch)** There is a CFG G s.t. $L = L(G)$.
 Consider the parse tree of a long string in L.
 For any long string, some nonterminal N must appear twice in the path.
Example: Consider $L = \{a^n b^n c^n : n \geq 1\}$. Show L is not a CFL.

- Proof: (by contradiction)
 Assume L is a CFL and apply the pumping lemma.
 Let m be the constant in the pumping lemma and consider $w = a^m b^m c^m$. Note $|w| \geq m$.
 Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i xy^i z \in L$ for $i = 0, 1, 2, \ldots$.

Case 1: neither v nor y can contain 2 or more distinct symbols

$uv^2 xy^2 z \notin L$ \(v = aabb \)
Case 2

\[v = a^{+3}, \text{ then } y = a^{+2}, \text{ or } y = b^{+3} \]

\[\begin{cases} \text{if } y = a^{+2}, & z \geq m+1, \text{ and } m+1 + t_3 > 0, \text{ or } \text{ neither } n_{a5} > n_{a5}' \text{ nor } n_{b5} > n_{c5}' \\ \text{if } y = b^{+3}, & z \geq m+1, \text{ and } m+1 + t_3 > 0, \end{cases} \]

Case 3

\[v = b^{+3}, \text{ thus } y = b^{+2}, \text{ or } y = c^{+3} \]

\[\begin{cases} \text{if } y = b^{+2}, & uv^2x y z = a b c \text{ and } m + m + t_2 + t_3 \geq 0, \text{ or } n_{b5} > n_{a5} \text{ and } n_{a5} > n_{c5}' \text{ and } n_{b5} > n_{c5}' \text{ and } t_2 + t_3 > 0 \text{ or } \text{ neither } n_{b5} > n_{a5} \text{ nor } n_{c5}' \end{cases} \]
Case 4 \(v = c^t \), \(y = c^{t+2} \)

\[u v^2 x y^2 z = a^m b^n m^{x+t} + t^2 \]

It's 7 nas
Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example: Why would we want to recognize a language of the type
\(\{a^n b^n c^n : n \geq 1\} \)?

Example: Consider
\(L = \{a^n b^n c^p : p > n > 0\} \). Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider
\(w = a^m b^m c^m \) Note \(|w| \geq m \).

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Cases for \(w = aaaa \ldots ab \ldots bccc \ldots c \):

- Case 1
- Case 2
- Case 3
- Case 4
Case 4 \(v = c^1 \) \(y = c^2 \)

\[\sum_{i=0}^m x_i y_i^2 = uyxz = a \] \(b \) \(c \) \(d \) \(e \) \(f \)

\[t_1 + t_2 > 0 \quad n \leq 5 \quad n \neq 5 \]
Example: Consider $L = \{a^jb^k : k = j^2\}$. Show L is not a CFL.

- **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

 \[w = a^m b^m \]

 Show there is no division of w into $uvwxy$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i xy^i z \in L$ for $i = 0, 1, 2, \ldots$.

 Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^2 xy^2 z \notin L$ since there will be b’s before a’s.

 Thus, v and y can be only a’s, and b’s (not mixed).

 \[v = a^3 \text{ or } v \text{ is } b^p \]

 - **Case 2**
 - **Case 3**
Case 2: $v = a^t_1, \ y = a$ or b

If $y = a^t_2$

$$uv^2x^2y^2z = \alpha b$$

not enough b's

If $y = b^t_3$

$$uv^2x^2y^2z = \alpha b$$

$$uv^2xy^2z = \alpha b$$

$0 < t_1 + t_3 \leq \frac{c}{m}$

If $t_1 = 0$, too many b's

If $t_1 > 0$

If $t_1 = 1$:

$$(m+1)^2 = m^2 + 2m + 1$$

too few b's
Example: Consider
$L = \{www : w \in \Sigma^*\}$, $\Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. Show L is not a CFL.

Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
\[w = \underbrace{aa \ldots a}_{m} \underbrace{bb \ldots b}_{m} \underbrace{aa \ldots a}_{m}\]
Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.
Example: Consider $L = \{a^n b^p b^p a^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into $uvxyz$, with:

$$u = a^m b^{m-2}, \quad v = b, \quad x = bb, \quad y = b, \quad z = b^{m-2} a^m$$

$$|vy| \geq 1, \quad |vxy| = m$$

$$\forall i \geq 0, uv^i x y^i z \in L$$

$$a^m b^{m+i} b^{m+i} a^m \in L$$
Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

• Proof:

Given 2 CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

- Union:

Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.

$G_3 = (V_3, T_3, S_3, P_3)$
– Concatenation:

Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.

$G_3 = (V_3, T_3, S_3, P_3)$

– Star-Closure

Construct G_3 s.t. $L(G_3) = L(G_1)^*$

$G_3 = (V_3, T_3, S_3, P_3)$
Theorem CFL’s are NOT closed under intersection and complementation.

• Proof:
 – Intersection:
– Complementation:
Theorem: CFL’s are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• Proof: (sketch) We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

$M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):
We must formally define δ_3. If

then

Must show

if and only if
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?
Example: Consider
$L = \{a^{2n}b^{2m}c^{n}d^{m} : n, m \geq 0\}$. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
$w = a^{2m}b^{2m}c^{m}d^{m}$.

Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^{i}xy^{i}z \in L$ for $i = 0, 1, 2, \ldots$.

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^{2}xy^{2}z \notin L$ since there will be b’s before a’s.

Thus, v and y can be only a’s, b’s, c’s, or d’s (not mixed).

Case 2: $v = a^{t_{1}}$, then $y = a^{t_{2}}$ or $b^{t_{3}}$ ($|vxy| \leq m$)

If $y = a^{t_{2}}$, then
$uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^md^m \notin L$ since $t_1 + t_2 > 0$, the number of a‘s is not twice the number of c‘s.

If $y = b^{t_3}$, then
$uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^md^m \notin L$ since $t_1 + t_3 > 0$, either the number of a‘s (denoted $n(a)$) is not twice $n(c)$ or $n(b)$ is not twice $n(d)$.

Case 3: $v = b^{t_1}$, then $y = b^{t_2}$ or c^{t_3}

If $y = b^{t_2}$, then
$uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^md^m \notin L$ since $t_1 + t_2 > 0$, $n(b) > 2*n(d)$.

If $y = c^{t_3}$, then
$uv^2xy^2z = a^{2m}b^{2m+t_1}c^{m+t_3}d^m \notin L$ since $t_1 + t_3 > 0$, either $n(b) > 2*n(d)$ or $2*n(c) > n(a)$.

Case 4: $v = c^{t_1}$, then $y = c^{t_2}$ or d^{t_3}

If $y = c^{t_2}$, then
$uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1+t_2}d^m \notin L$ since $t_1 + t_2 > 0$, $2*n(c) > n(a)$.

If $y = d^{t_3}$, then
\[uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1}d^{m+t_3} \notin L\] since \(t_1 + t_3 > 0\), either \(2*n(c) > n(a)\) or \(2*n(d) > n(b)\).

Case 5: \(v = d^{t_1}\), then \(y = d^{t_2}\)
then \(uv^2xy^2z = a^{2m}b^{2m}c^{m}d^{m+t_1+t_2} \notin L\) since \(t_1 + t_2 > 0\), \(2*n(d) > n(c)\).

Thus, there is no breakdown of \(w\) into \(uvxyz\) such that \(|vy| \geq 1\), \(|vxy| \leq m\) and for all \(i \geq 0\), \(uv^i xy^i z\) is in \(L\). Contradiction, thus, \(L\) is not a CFL. Q.E.D.