Section: Properties of Context-free Languages

Which of the following languages are CFL?

• \(L = \{ a^n b^n c^j \mid 0 < n \leq j \} \) NOT CFL
• \(L = \{ a^n b^j a^n b^j \mid n > 0, j > 0 \} \) NOT CFL
• \(L = \{ a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \} \) CFL
• \(L = \{ a^n b^j a^j b^n \mid n > 0, j > 0 \} \) CFL
Pumping Lemma for Regular Language’s: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \geq m$, $w = xyz$ such that

- $|xy| \leq m$
- $|y| \geq 1$
- for all $i \geq 0$, $xy^iz \in L$
Pumping Lemma for CFL’s Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \geq m$, we may partition $w = uvxyz$ such that:

$|vxy| \leq m$, (limit on size of substring)
$|vy| \geq 1$, (v and y not both empty)
For all $i \geq 0$, $uv^ixy^iz \in L$

• Proof: (sketch) There is a CFG G s.t. $L = L(G)$.
Consider the parse tree of a long string in L.
For any long string, some nonterminal N must appear twice in the path.
Example: Consider
\[L = \{ a^n b^n c^n : n \geq 1 \} \]. Show \(L \) is not a CFL.

- **Proof:** (by contradiction)

 Assume \(L \) is a CFL and apply the pumping lemma.

 Let \(m \) be the constant in the pumping lemma and consider
 \[w = a^m b^m c^m \]. Note \(|w| \geq m \).

 Show there is no division of \(w \) into \(uvxyz \) such that
 \[|vy| \geq 1, \ |vxy| \leq m, \] and
 \(uv^i x y^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: neither \(v \) nor \(y \) can contain 2 or more distinct symbols

\[u v^2 x y^2 z \not\in L \quad v = aabb \]
Case 2 \(v = a + t_1 \), then \(y = a^+ \) or \(y = b^+ \)

\[\text{if } y = a^+ \quad \begin{align*}
 z & = \frac{u}{m+t_1} + \frac{v}{m+t_2} \\
 & \quad \text{such that } \begin{cases}
 uvxyz = a & \text{no's} \\
 uvxyz = b & \text{no's} \\
 uvxyz = c & \text{no's}
 \end{cases}
\end{align*} \]

\[\text{if } y = b^+ \quad \begin{align*}
 z & = \frac{u}{m+t_1} + \frac{v}{m+t_2} \\
 & \quad \text{such that } \begin{cases}
 uvxyz = a & \text{no's} \\
 uvxyz = b & \text{no's} \\
 uvxyz = c & \text{no's}
 \end{cases}
\end{align*} \]

\[t_1 + t_3 > 0 \implies \text{either } \text{no's} > \text{no's} \quad \text{or } \text{no's} > \text{no's} \]

Case 3 \(v = b + t_1 \), thus \(y = b^+ \) or \(y = c^+ \)

\[\text{if } y = b^+ \quad \begin{align*}
 z & = \frac{u}{m+t_1} + \frac{v}{m+t_2} \\
 & \quad \text{such that } \begin{cases}
 uvxyz = a & \text{no's} \\
 uvxyz = b & \text{no's} \\
 uvxyz = c & \text{no's}
 \end{cases}
\end{align*} \]

\[\text{if } y = c^+ \quad \begin{align*}
 z & = \frac{u}{m+t_1} + \frac{v}{m+t_2} \\
 & \quad \text{such that } \begin{cases}
 uvxyz = a & \text{no's} \\
 uvxyz = b & \text{no's} \\
 uvxyz = c & \text{no's}
 \end{cases}
\end{align*} \]

\[t_2 + t_3 > 0 \implies \text{either } \text{no's} > \text{no's} \quad \text{or } \text{no's} > \text{no's} \]
Case 4: $v = c^t$, $y = c^z$

$uv^2xy^2z = a^m b^m m + t + z$
Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{a^n b^n c^n : n \geq 1\} \)?

Example: Consider \(L = \{a^n b^n c^p : p > n > 0\} \). Show \(L \) is not a CFL.

• Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = a^m b^m c^m \) Note \(|w| \geq m \).

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m, \) and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \)
Case 1 same as before 2 distinct symbols

Case 4 \(v = c^1 \) \(y = c^2 \)

\[t_{i-1} m_{i-1} = t_i t_2 \]

\[v_i x y_i z = u v z = a b c \in \mathcal{L} \]

\[t_1 + t_2 > 0 \quad n e s \neq n b s \]
Example: Consider \(L = \{a^j b^k : k = j^2\} \).
Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider

\[w = \underline{a^m b^m} \]

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \), and \(uv^ixy^iz \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2xy^2z \notin L \) since there will be \(b \)'s before \(a \)'s.
Thus, \(v \) and \(y \) can be only \(a \)'s, and \(b \)'s (not mixed).

\[v = a^3 \text{ or } v = b^3 \]

Case 2

Case 3
Case 2 \(v = a' \), \(y = a \) or \(b' \)

If \(y = a^2 \)
\[
uv^2y^2 = a^{m+t_1+t_2} b \notin \mathbb{N}
\]
Not enough \(b' \)'s

If \(y = b^t_3 \)
\[
uv^2y^2 = a^{m+t_1} b^t_3 \notin \mathbb{N}
\]

\[0 < t_1 + t_3 \leq \frac{c}{m} \]

If \(t_1 = 0 \), too many \(b' \)'s

If \(t_1 > 0 \),
\[
(m+1)^2 = z = m^2 + 2m + 1
\]
Too few \(b' \)'s
Example: Consider
$L = \{w\bar{w}w : w \in \Sigma^*\}$, $\Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. Show L is not a CFL.

• Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

$w = \underline{a^m b^m a^m}$

Show there is no division of w into $uvwxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^i xy^i z \in L$ for $i = 0, 1, 2, \ldots$.

\[\text{aaa...abb...ba...a} \]
\[\text{aaa...ab...bAAA...A}\]
Example: Consider \(L = \{a^n b^p b^p a^n\} \). \(L \) is a CFL. The pumping lemma should apply!

Let \(m \geq 4 \) be the constant in the pumping lemma. Consider \(w = a^m b^m b^m a^m \).

We can break \(w \) into \(uvxyz \), with:

\[
\begin{align*}
 u & = a^m \\
 v & = b \\
 x & = b^m \\
 y & = b \\
 z & = b^{m-2} a^m \\
 |wy| & \geq 1 \\
 |vxy| & = m \\
 \forall i \geq 0, uv^i x v^i y z \in L \\
 a^m b^{m+i} b^{m+i} a^m \in L
\end{align*}
\]
Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

• Proof:

Given 2 CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

– Union:

Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.
$G_3 = (V_3, T_3, S_3, P_3)$

$V_3 = V_1 \cup V_2 \cup \{S_3\}$

$T_3 = T_1 \cup T_2$

$P_3 = P_1 \cup P_2 \cup \{S_3 \rightarrow S_1, S_2\}$
– Concatenation:
Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
$G_3 = (V_3, T_3, S_3, P_3)$

$S_3 \rightarrow S_1 S_2$

– Star-Closure
Construct G_3 s.t. $L(G_3) = L(G_1)^*$
$G_3 = (V_3, T_3, S_3, P_3)$
$V_3 = V_1 \cup \exists S_3 \exists T_3 = T_1$
$P_3 = P_1 \cup \exists S_3 \rightarrow S_1 S_2$
Theorem CFL’s are NOT closed under intersection and complementation.

• Proof:

 – Intersection:

 \[L_1 = \{ a^n b^m c^n \mid n > 0, m > 0 \} \]
 \[L_2 = \{ a^m b^m c^m \mid n > 0, m > 0 \} \]

 \[L_1 \cap L_2 \text{ are CFL's} \]

 \[L = \{ a^n b^n c^n \mid n > 0 \} \]

 \[L \text{ is not a CFL!} \]
– Complementation:

\[L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2} \]
Theorem: CFL’s are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• Proof: (sketch) We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Construct $M_3 = (Q_3, \Sigma, \delta_3, (q_0, q'_0), F_3)$ where $Q_3 = Q_1 \times Q_2$,

$F_3 = \{ (q, p) | q \in F_1, p \in F_2 \}$

Example of replacing arcs (NOT a Proof!):
We must formally define \(\delta_3 \). If
\[
(q_k, x) \in S, (q_i, a, b)
\]
and \(\delta_2(q_j, a) = q'_e \)
then
\[
((q_k, q'_e), x) \in S_3((q_i, q'_j), a, b)
\]
Must show
\[
((q_0, q'_0), w, z) \not\vdash (q_i, q'_j, z) \not\vdash
(q_i, q'_j) \in F_3
\]
if and only if
\[
(q_0, w, z) \not\vdash (q_i, z, x) \not\vdash
(q'_0, w) \not\vdash (q'_j)
\]
\(q_i \in F_1 \), \(q'_j \in F_2 \)
Questions about CFL:

1. Decide if CFL is empty?

 get rid of useless prod. If any rules left, then not empty.

2. Decide if CFL is infinite?

 Get rid of a-rules, unit prod & useless prod.
 is there a variable that repeats
 $A \Rightarrow x A y$

 model with a graph & look for a loop
Example: Consider
\[L = \{ a^{2n} b^{2m} c^n d^m : n, m \geq 0 \} \]. Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider
\[w = a^{2m} b^{2m} c^m d^m. \]

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2 xy^2 z \notin L \) since there will be \(b \)'s before \(a \)'s.

Thus, \(v \) and \(y \) can be only \(a \)'s, \(b \)'s, \(c \)'s, or \(d \)'s (not mixed).

Case 2: \(v = a^{t_1} \), then \(y = a^{t_2} \) or \(b^{t_3} \) \((|vxy| \leq m)\)

If \(y = a^{t_2} \), then
$uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^md^m \notin L$ since $t_1 + t_2 > 0$, the number of a’s is not twice the number of c’s.

If $y = b^{t_3}$, then
$uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^md^m \notin L$ since $t_1 + t_3 > 0$, either the number of a’s (denoted $n(a)$) is not twice $n(c)$ or $n(b)$ is not twice $n(d)$.

Case 3: $v = b^{t_1}$, then $y = b^{t_2}$ or c^{t_3}

If $y = b^{t_2}$, then
$uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^md^m \notin L$ since $t_1 + t_2 > 0$, $n(b) > 2*n(d)$.

If $y = c^{t_3}$, then
$uv^2xy^2z = a^{2m}b^{2m+t_1}c^{m+t_3}d^m \notin L$ since $t_1 + t_3 > 0$, either $n(b) > 2*n(d)$ or $2*n(c) > n(a)$.

Case 4: $v = c^{t_1}$, then $y = c^{t_2}$ or d^{t_3}

If $y = c^{t_2}$, then
$uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1+t_2}d^m \notin L$ since $t_1 + t_2 > 0$, $2*n(c) > n(a)$.

If $y = d^{t_3}$, then
$uv^2xy^2z = a^{2m}b^{2m}c^m + t_1d^m + t_3 \not\in L$ since $t_1 + t_3 > 0$, either $2\ast n(c) > n(a)$ or $2\ast n(d) > n(b)$.

Case 5: $v = d^{t_1}$, then $y = d^{t_2}$

then $uv^2xy^2z = a^{2m}b^{2m}c^m d^m + t_1 + t_2 \not\in L$ since $t_1 + t_2 > 0$, $2\ast n(d) > n(c)$.

Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, uv^ixy^iz is in L. Contradiction, thus, L is not a CFL. Q.E.D.