Section: Transforming grammars
(Ch. 6)

Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

$$A \rightarrow x_1Bx_2$$

where A and B are different variables, and B has the productions

$$B \rightarrow y_1y_2\ldots y_n$$

Then can construct G' from G by deleting

$$A \rightarrow x_1Bx_2$$

from P and adding to it

$$A \rightarrow x_1y_1x_2x_1y_2x_2\ldots x_1y_nx_2$$

Then, $L(G)=L(G')$.
Example: \[S \rightarrow aBa \]
\[B \rightarrow aS \mid a \]
becomes \[S \rightarrow aaaSa \mid a \]
\[B \rightarrow aSa \mid a \]

Definition: A production of the form \[A \rightarrow Ax, \ A \in V, \ x \in (V \cup T)^* \] is left recursive.
Example Previous expression
grammar was left recursive.

\[
E \rightarrow E + T \mid T \\
T \rightarrow T * F \mid F \\
F \rightarrow I \mid (E) \\
I \rightarrow a \mid b
\]

Derivation of \(a+b+a+a\) is:

\[
E \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \\
\Rightarrow a + T + T + T
\]
Theorem (Removing Left recursion)

Let $G=(V,T,S,P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

\[
A \rightarrow A x_1 \mid A x_2 \mid \ldots \mid A x_n \\
A \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m
\]

where x_i, y_i are in $(V \cup T)^*$.

Then $G'=(V\cup\{Z\}, T, S, P')$ and P' replaces rules of form above by

\[
A \rightarrow y_i y_i Z, \; i=1,2,\ldots,m \\
Z \rightarrow x_i x_i Z, \; i=1,2,\ldots,n
\]
Example:

\[E \rightarrow E + T | T \]

\[T \rightarrow T \ast F | F \]

becomes

\[E \rightarrow T | T Z \]
\[Z \rightarrow T | + T Z \]

\[T \rightarrow F | F Y \]
\[Y \rightarrow \ast F | \ast F Y \]

Now, Derivation of \(a + b + a + a \) is:

\[E \rightarrow T Z \rightarrow F Z \rightarrow I Z \rightarrow a Z \]
Useless productions

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \]
\[C \rightarrow cBc \mid a \]

What can you say about this grammar?

Theorem (useless productions) Let \(G \) be a CFG. Then \(\exists G' \) that does not contain any useless variables or productions s.t. \(L(G) = L(G') \).
To Remove Useless Productions:

Let $G=(V,T,S,P)$.

I. Compute $V_1=\{\text{Variables that can derive strings of terminals}\}$

1. $V_1=\emptyset$

2. Repeat until no more variables added
 - For every $A \in V$ with $A \rightarrow x_1x_2 \ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 =$ all productions in P with symbols in $(V_1 \cup T)^*$

Then $G_1=(V_1,T,S,P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph
For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G) = L(G')$ and G' has no useless productions.
Example:

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \mid b \]
\[C \rightarrow cBc \mid a \]
\[D \rightarrow bCb \]
\[E \rightarrow Aa \mid b \]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists$ production $A \rightarrow \lambda \}$

2. Repeat until no more additions
 - if $B \rightarrow A_1A_2\ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n

3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1x_2\ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[S \rightarrow Ab \]
\[A \rightarrow BCB \mid Aa \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow cC \mid \lambda \]
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \]
\[B \rightarrow a \mid ab \]

But what if we have

\[A \rightarrow B \]
\[B \rightarrow C \]
\[C \rightarrow A \]
Theorem (Remove unit productions)
Let \(G = (V,T,S,P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G' = (V',T',S,P') \) that does not have any unit-productions and \(L(G) = L(G') \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow B \) (Draw a dependency graph)
2. Construct \(G' = (V',T',S,P') \) by
 (a) Put all non-unit productions in \(P' \)
 (b) For all \(A \Rightarrow^* B \) s.t. \(B \rightarrow y_1 \mid y_2 \mid \ldots y_n \in P' \), put \(A \rightarrow y_1 \mid y_2 \mid \ldots y_n \in P' \)
Example:

S \rightarrow AB
A \rightarrow B
B \rightarrow C $|$ Bb
C \rightarrow A $|$ c $|$ Da
D \rightarrow A
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

$$A \rightarrow BC \quad \text{or} \quad A \rightarrow a$$

where $$A, B, C \in V$$ and $$a \in T$$.

Theorem: Any CFG $$G$$ with $$\lambda$$ not in $$L(G)$$ has an equivalent grammar in CNF.

Proof:

1. Remove $$\lambda$$-productions, unit productions, and useless productions.

2. For every rhs of length $$> 1$$, replace each terminal $$x_i$$ by a new variable $$C_j$$ and add the production $$C_j \rightarrow x_i$$.

3. Replace every rhs of length $$> 2$$ by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[A_i \rightarrow A_j x_j, \ j > i \]
\[Z_i \rightarrow A_j x_j, \ j \leq n \]
\[A_i \rightarrow ax_i \]

where \(a \in T, \ x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}, \) etc until all productions are in the correct form.