Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

\[A \rightarrow x_1Bx_2 \]

where A and B are different variables, and B has the productions

\[B \rightarrow y_1 | y_2 | \ldots | y_n \]

Then can construct G’ from G by deleting

\[A \rightarrow x_1Bx_2 \]

from P and adding to it

\[A \rightarrow x_1y_1x_2|x_1y_2x_2|\ldots|x_1y_nx_2 \]

Then, \(L(G) = L(G’) \).
Example: \[
\begin{align*}
S & \rightarrow aBa \\
B & \rightarrow aS \mid a
\end{align*}
\]
becomes \[
\begin{align*}
S & \rightarrow aaSa \mid a \alpha a \\
B & \rightarrow aS \mid a
\end{align*}
\]

Definition: A production of the form \(A \rightarrow Ax, A \in V, x \in (V \cup T)^*\) is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E+T \mid T \\
T & \rightarrow T*F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of \(a+b+a+a\) is:

\[
\begin{align*}
\Rightarrow & \quad E+T \Rightarrow E+T+T \Rightarrow E+T+T+T \\
\Rightarrow & \quad a+T+T+T
\end{align*}
\]
Theorem (Removing Left recursion)
Let \(G=(V,T,S,P) \) be a CFG. Divide productions for variable \(A \) into left-recursive and non left-recursive productions:

\[
\begin{align*}
A & \rightarrow A x_1 \mid A x_2 \mid \ldots \mid A x_n \\
A & \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m
\end{align*}
\]

where \(x_i, y_i \) are in \((V \cup T)^*\).

Then \(G'=(V \cup \{Z\}, T, S, P') \) and \(P' \) replaces rules of form above by

\[
\begin{align*}
A & \rightarrow y_i y_i Z, \ i=1,2,\ldots,m \\
Z & \rightarrow x_i x_i Z, \ i=1,2,\ldots,n
\end{align*}
\]
Example:

\[E \rightarrow E + T | T \] becomes \[E \rightarrow T | TZ \]

\[T \rightarrow T * F | F \] becomes \[T \rightarrow F | FY \]

\[Y \rightarrow * F | * FY \]

Now, Derivation of \(a + b + a + a \) is:

\[E \rightarrow TZ \rightarrow FZ \rightarrow IZ \rightarrow aZ \]
Useless productions

$S \rightarrow aB \mid bA$
$A \rightarrow aA$
$B \rightarrow Sa$
$C \rightarrow cBc \mid a$

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then $\exists G'$ that does not contain any useless variables or productions s.t. $L(G) = L(G')$.
To Remove Useless Productions:

Let $G = (V, T, S, P)$.

1. Compute $V_1 = \{\text{Variables that can derive strings of terminals}\}$

1. $V_1 = \emptyset$

2. Repeat until no more variables added
 - For every $A \in V$ with $A \rightarrow x_1 x_2 \ldots x_n$, $x_i \in (T^* \cup V_1)$, add A to V_1

3. $P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*$

Then $G_1 = (V_1, T, S, P_1)$ has no variables that can’t derive strings.
II. Draw Variable Dependency Graph
For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G) = L(G')$ and G' has no useless productions.

Stopped here
Example:

\[
S \rightarrow aB \mid bA \\
A \rightarrow aA \\
B \rightarrow Sa \mid b \\
C \rightarrow cBc \mid a \\
D \rightarrow bCb \\
E \rightarrow Aa \mid b
\]

\[V1 = \{ B, C, E, S, D \}\]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists \text{ production } A \rightarrow \lambda \}$
2. Repeat until no more additions
 - if $B \rightarrow A_1 A_2 \ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n
3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1 x_2 \ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[
\begin{align*}
S & \rightarrow Ab \\
A & \rightarrow BCB \mid Aa \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow cC \mid \lambda \\
\end{align*}
\]

\[
V_n = \{ B, C, A \}
\]
Definition Unit Production

A \rightarrow B

where A, B \in V.

Consider removing unit productions:

Suppose we have

A \rightarrow B \quad \text{becomes} \quad \overset{\text{A} \rightarrow \text{a} \mid \text{ab}}{\text{B} \rightarrow \text{a} \mid \text{ab}}

But what if we have

A \rightarrow B \quad \text{becomes} \quad \overset{\text{A} \rightarrow \text{C}}{\text{B} \rightarrow \text{A}}
\text{B} \rightarrow \text{C}
\text{C} \rightarrow \text{A}
Theorem (Remove unit productions)
Let $G=(V,T,S,P)$ be a CFG without λ-productions. Then \exists CFG $G’=(V’,T’,S,P’)$ that does not have any unit-productions and $L(G)=L(G’)$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \Rightarrow B$ (Draw a dependency graph)

2. Construct $G’=(V’,T’,S,P’)$ by

 (a) Put all non-unit productions in $P’$

 (b) For all $A \Rightarrow B$ s.t. $B \rightarrow y_1|y_2| \ldots y_n \in P’$, put $A \rightarrow y_1|y_2| \ldots y_n \in P’$
Example:

\[S \rightarrow AB \]
\[A \rightarrow B \]
\[B \rightarrow C \mid Bb \]
\[C \rightarrow A \mid c \mid Da \]
\[D \rightarrow A \]
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length \(> 1 \), replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length \(> 2 \) by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]

\[S \rightarrow CB \ (B(c) \ B(d)) \]

\[S \rightarrow CZ_1 \]
\[Z_1 \rightarrow BZ_2 \]
\[Z_2 \rightarrow B(c)B(d) \]

\[S \rightarrow CZ_1 \]
\[\rightarrow CBZ_2 \]
\[\rightarrow CB \ B(c)B(d) \]
After exporting to convert variables into single letters:

<table>
<thead>
<tr>
<th>LHS</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>CE</td>
</tr>
<tr>
<td>E</td>
<td>BF</td>
</tr>
<tr>
<td>F</td>
<td>AD</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>CA</td>
</tr>
<tr>
<td>A</td>
<td>c</td>
</tr>
<tr>
<td>C</td>
<td>e</td>
</tr>
</tbody>
</table>

S → CBcd
B → b
C → Cc
C → e

<table>
<thead>
<tr>
<th>LHS</th>
<th>RHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>CD(1)</td>
</tr>
<tr>
<td>D(1)</td>
<td>BD(2)</td>
</tr>
<tr>
<td>D(2)</td>
<td>B(c)B(d)</td>
</tr>
<tr>
<td>B(d)</td>
<td>d</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
</tr>
<tr>
<td>C</td>
<td>CB(c)</td>
</tr>
<tr>
<td>B(c)</td>
<td>c</td>
</tr>
<tr>
<td>C</td>
<td>e</td>
</tr>
</tbody>
</table>

Conversion done. Press "Export" to use.
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem: For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
A_i \rightarrow A_j x_j, \ j > i
\]
\[
Z_i \rightarrow A_j x_j, \ j \leq n
\]
\[
A_i \rightarrow ax_i
\]

where \(a \in T, \ x_i \in V^*,\) and \(Z_i\) are new variables introduced for left recursion.

4. All productions with \(A_n\) are in the correct form, \(A_n \rightarrow ax_n.\) Use these productions as substitutions to get \(A_{n-1}\) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3},\) etc until all productions are in the correct form.