Section: Decidability

Computability A function \(f \) with domain \(D \) is *computable* if there exists some TM \(M \) such that \(M \) computes \(f \) for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.
The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w?
Theorem The halting problem is undecidable.

Proof: (by contradiction)

- Assume there is a TM H (or algorithm) that solves this problem.

 TM H has 2 final states, q_y represents yes and q_n represents no.

 $$H(w_M, w) = \begin{cases}
 \text{halts } q_y & \text{if } M \text{ halts on } w \\
 \text{halts } q_n & \text{if } M \text{ doesn't halt on } w
 \end{cases}$$

 TM H always halts in a final state.
Construct TM H' from H

$$H'(w_M, w) = \begin{cases}
\text{halts} & \text{if } M \text{ not halt on } w \\
\text{not halt} & \text{if } M \text{ halts on } w
\end{cases}$$

Construct TM \hat{H} from H'

$$\hat{H}(w_M) = \begin{cases}
\text{halts} & \text{if } M \text{ not halt on } w_M \\
\text{not halt} & \text{if } M \text{ halts on } w_M
\end{cases}$$

Note that \hat{H} is a TM.

There is some encoding of it, say $\hat{w}_{\hat{H}}$.

What happens if we run \hat{H} with input $\hat{w}_{\hat{H}}$?

$$\hat{H}(\hat{w}_{\hat{H}}) = \begin{cases}
\text{halts} & \text{if } \hat{H} \text{ doesn't halt on } \hat{w}_{\hat{H}} \\
\text{doesn't halt} & \text{if } \hat{H} \text{ halts on } \hat{w}_{\hat{H}}
\end{cases}$$

That can't be true.

Contradiction.

\implies there is no algorithm for this problem \implies undecidable.
Theorem If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

- Proof: Let L be an RE language over Σ.
 Let M be the TM such that $L = L(M)$.
 Let H be the TM that solves the halting problem.

 Calculate $H(w_m, w)$.
 If H says no then w is not in L.
 (Since M does not halt on w.)
 If H says yes, then apply M to w. M should halt and tell us if w is in L or not.

 We could is w is in L or not if L is recursive.
A problem A is reduced to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable.
State-entry problem

Given TM $M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)$, state $q \in Q$, and string $w \in \Sigma^*$, is state q ever entered when M is applied to w?

This is an undecidable problem!

- Proof:

 TM E solves state-entry problem

 $$E'(w_M, w) = \begin{cases}
 M \text{ halts on } w & \text{if } \ ? \\
 M \text{ doesn't halt on } w & \text{if } \ ?
 \end{cases}$$