Section: LR Parsing

LR PARSING

LR(k) Parser

- bottom-up parser
- shift-reduce parser
- L means: reads input left to right
- R means: produces a rightmost derivation
- k - number of lookahead symbols

LR parsing process

- convert CFG to PDA
- Use the PDA and lookahead symbols
Convert CFG to PDA

The constructed NPDA:

- three states: s, q, f
 start in state s, assume z on stack
- all rewrite rules in state s, backwards
 rules pop rhs, then push lhs
 \((s, \text{lhs}) \in \delta(s, \lambda, \text{rhs})\)
 This is called a reduce operation.
- additional rules in s to recognize terminals
 For each \(x \in \Sigma, \ g \in \Gamma, \ (s, xg) \in \delta(s, x, g)\)
 This is called a shift operation.
- pop S from stack and move into state q
- pop z from stack, move into f, accept.
Example: Construct a PDA.

\[S \rightarrow aSb \]
\[S \rightarrow b \]
LR Parsing Actions

1. shift
 transfer the lookahead to the stack

2. reduce
 For \(X \rightarrow w \), replace \(w \) by \(X \) on the stack

3. accept
 input string is in language

4. error
 input string is not in language

LR(1) Parse Table

- Columns:
 terminals, $ and variables

- Rows:
 state numbers: represent patterns in a derivation
LR(1) Parse Table Example

1) \(S \rightarrow aSb \)
2) \(S \rightarrow b \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>s5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

Definition of entries:

- \(sN \) - shift terminal and move to state \(N \)
- \(N \) - move to state \(N \)
- \(rN \) - reduce by rule number \(N \)
- \(\text{acc} \) - accept
- blank - error
state = 0
push(state)
read(symbol)
entry = T[state, symbol]
while entry.action ≠ accept do
 if entry.action == shift then
 push(symbol)
 state = entry.state
 push(state)
 read(symbol)
 else if entry.action == reduce then
 do 2*size rhs times {pop()}
 state := top-of-stack()
 push(entry.rule.lhs)
 state = T[state, entry.rule.lhs]
 push(state)
 else if entry.action == blank then
 error
 entry = T[state, symbol]
end while
if symbol ≠ $ then error
Example:
Trace aabbb

S: z z z z z z z z z z z
L: a a b b b b b $ $
A: sh sh sh red sh red sh red acc
To construct the LR(1) parse table:

- Construct a dfa to model the top of the stack
- Using the dfa, construct an LR(1) parse table

To Construct the DFA

- Add $S' \rightarrow S$
- place a marker “_” on the rhs
 $S' \rightarrow _S$
- Compute closure($S' \rightarrow _S$).
 Def. of closure:

 1. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\}$ if x is a terminal.
 2. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\}$
 $\cup \text{closure}(x \rightarrow _w)$ for all w if x is a variable.
• The closure($S' \to _S$) is state 0 and "unprocessed".

• Repeat until all states have been processed

 - unproc = any unprocessed state

 - For each x that appears in $A \to u _x v$ do

 * Add a transition labeled "x" from state "unproc" to a new state with production $A \to u x v$

 * The set of productions for the new state are: closure($A \to u x v$)

 * If the new state is identical to another state, combine the states Otherwise, mark the new state as "unprocessed"

• Identify final states.
Example: Construct DFA

(0) $S' \rightarrow S$
(1) $S \rightarrow aSb$
(2) $S \rightarrow b$
Backtracking through the DFA
Consider aabbb
 • Start in state 0.
 • Shift “a” and move to state 2.
 • Shift “a” and move to state 2.
 • Shift “b” and move to state 3.
 Reduce by “$S \rightarrow b$”
 Pop “b” and Backtrack to state 2.
 Shift “S” and move to state 4.
 • Shift “b” and move to state 5.
 Reduce by “$S \rightarrow aSb$”
 Pop “aSb” and Backtrack to state 2.
 Shift “S” and move to state 4.
 • Shift “b” and move to state 5.
 Reduce by “$S \rightarrow aSb$”
 Pop “aSb” and Backtrack to state 0.
Shift “S” and move to state 1.

- Accept. aabbb is in the language.
To construct LR(1) table from diagram:

1. If there is an arc from state1 to state2
 (a) arc labeled x is terminal or $\ T[state1, x] = sh \ state2$
 (b) arc labeled X is nonterminal
 $T[state1, X] = state2$

2. If state1 is a final state with $X \rightarrow w$
 For all a in FOLLOW(X),
 $T[state1,a] = reduce \ by \ X \rightarrow w$

3. If state1 is a final state with $S' \rightarrow S$
 $T[state1,\$] = accept$

4. All other entries are error
Example: LR(1) Parse Table

(0) S’ → S
(1) S → aSb
(2) S → b

Here is the LR(1) Parse Table with extra information about the stack contents of each state.

<table>
<thead>
<tr>
<th>Stack contents</th>
<th>State number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(empty)</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>aa*</td>
<td>2</td>
</tr>
<tr>
<td>aa*b/b</td>
<td>3</td>
</tr>
<tr>
<td>aa*S</td>
<td>4</td>
</tr>
<tr>
<td>aa*Sb</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>s2</td>
<td>s3</td>
</tr>
<tr>
<td>s2</td>
<td>s3</td>
</tr>
<tr>
<td>s5</td>
<td></td>
</tr>
</tbody>
</table>
Actions for entries in LR(1) Parse table \(T[state, symbol] \)

Let entry = \(T[state, symbol] \).

- If symbol is a terminal or $:
 - If entry is “shift state\(_i\)” push lookahead and state\(_i\) on the stack
 - If entry is “reduce by rule \(X \rightarrow w \)” pop \(w \) and \(k \) states (\(k \) is the size of \(w \)) from the stack.
 - If entry is “accept”
 Halt. The string is in the language.
 - If entry is “error”
 Halt. The string is not in the language.
If symbol is nonterminal
We have just reduced the rhs of a production $X \rightarrow w$ to a symbol. The entry is a state number, call it state i. Push $T[\text{state}_i, X]$ on the stack.

Stopped here
Constructing Parse Tables for CFG’s with λ-rules

$A \rightarrow \lambda$ written as $A \rightarrow \lambda_-$

Example

$S \rightarrow ddX$
$X \rightarrow aX$
$X \rightarrow \lambda$

Add a new start symbol and number the rules:

(0) $S’ \rightarrow S$
(1) $S \rightarrow ddX$
(2) $X \rightarrow aX$
(3) $X \rightarrow \lambda$

Construct the DFA:
Construct the LR(1) Parse Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>d</th>
<th>$</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible Conflicts:

1. Shift/Reduce Conflict
 Example:

 $A \rightarrow ab$
 $A \rightarrow abcd$

 In the DFA:

 $A \rightarrow ab_-$
 $A \rightarrow ab_\text{cd}$

2. Reduce/Reduce Conflict
 Example:

 $A \rightarrow ab$
 $B \rightarrow ab$

 In the DFA:

 $A \rightarrow ab_-$
 $B \rightarrow ab_-$

3. Shift/Shift Conflict