Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

- Q is finite set of states
- Σ is tape (input) alphabet
- q₀ is initial state
- F ⊆ Q is set of final states.
- δ: Q × Σ → Q
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\}) \]

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q0</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0 \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0

```
q0
q1
```

2) 1 0 0

```
q0
q1
```

3) 1 0 0

```
q0
q1
```

4) 1 0 0

```
q0
q1
```
Definition:
\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M=(Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,
\[L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \} \]
Trap State

Example: $L(M) = \{ b^n a \mid n \geq 0 \}$

$\Sigma = \{ a, b \}$
Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s}\} \]
Example: DFA that accepts even binary numbers that have an even number of 1's.
Alternative solution:
Definition A language is regular iff there exists DFA M s.t. $L=L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = (Q, \Sigma, \delta, q_0, F)

where

Q is finite set of states
\Sigma is tape (input) alphabet
q_0 is initial state
F \subseteq Q is set of final states.

\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q
Example

Note: In this example $\delta(q_0, a) = \frac{q_0, q_2}{2}$

$L = \{ w \in \{a,b\}^* | w \neq 0 \}$
Example

$L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}$
Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

\[
\delta^*(q_0, ab) = q_5, q_6, q_8, q_3 \\
\delta^*(q_0, aba) = q_3
\]

Definition: For an NFA M,

$L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$
2.3 NFA vs. DFA: Which is more powerful?

Example:

Convert to DFA
Theorem Given an NFA
\(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\(Q_D = \mathcal{P}(Q_N) \)

\(F_D = \{ \mathcal{D} \subseteq Q_N \mid \exists q_i \in \mathcal{D} \text{ with } q_i \in F_N \} \)

\(\delta_D : Q_D \times \Sigma \rightarrow Q_D \)
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:

$$\lambda$$

Convert to DFA:
Properties and Proving - Problem 1

Consider the property
Replace_one_a_with_b or R1awb for short. If L is a regular, prove
R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each
string with a b. If a string does not
have an a, then the string is not in
R1awb(L).

Example 1: Consider L={aaab, bbba}
R1awb(L)=\{baab, abab, aabb, bbba, bbab\}

Example 2: Consider \(\Sigma = \{a, b\}\), \(L = \{w \in \Sigma^* \mid w \text{ has an even number of a's and an even number of b's}\}\)
R1awb(L)=\{w \in \Sigma^* \mid w \text{ has an odd no. of a's and odd no. of b's}\}

Proof:
L is regular

⇒ ∃ DFA M for it

Using M we want construct NFA for RRawb(D)

2 copies of M

NFA

Change to in applying a arc to the machine

ab aaba

V

abbaba

See the additional document under today's date on the calendar page that shows how to write this up as a formal proof.
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L={aaab, bbba}
TruncPreb(L)={aaab, aa3}

Example 2: Consider L = {(bba)^n | n > 0}
TruncPreb(L)=\exists a(bba)^{n\geq 0} \\
Proof:
L is regular

\[\Rightarrow \text{DFA } M \quad L(M) = L \]

Construct \(\hat{M} \)

\[\hat{b} \hat{b} \hat{g} \hat{a} \hat{b} \hat{a} \]

\[abab \]
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable

These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \implies \delta^*(p, w) \in F \\
\delta^*(p, w) \not\in F \implies \delta^*(q, w) \not\in F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \implies \delta^*(p, w) \not\in F \quad \text{OR} \\
\delta^*(q, w) \not\in F \implies \delta^*(p, w) \in F
\]
Example:
In Jflap, here is the DFA:
Here is the tree that shows the group of states broken up until cannot break them up anymore.
From the tree, each group makes a state and you hook it back up. This is minimal DFA with 5 states.
Example: