Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify \(\delta \),

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S, F\} \]

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

- (\(\Rightarrow \)): Given a standard TM \(M \), then there exists a TM \(M' \) with stay option such that \(L(M) = L(M') \).
• (\Leftrightarrow): Given a TM M with stay option, construct a standard TM M' such that $L(M) = L(M')$.

$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

$M' = (Q', \Sigma, \Gamma, \delta', q'_0, B, F')$

For each transition in M with a move (L or R) put the transition in M'. So, for

$$\delta(q_i, a) = (q_j, b, L \text{ or } R)$$

put into δ'

$$\delta'(q'_i, a) = (q'_j, b, L \text{ or } R)$$

For each transition in M with S (stay-option), move right and move left. So for

$$\delta(q_i, a) = (q_j, b, S)$$

$$\delta'(q'_i, a) = (q'_j, b, R)$$

$$\delta'(q'_i, c) = (q'_j, c, L) \quad \forall c \in \Sigma$$

$L(M) = L(M')$. QED.
Definition: A *multiple track* TM divides each cell of the tape into \(k \) cells, for some constant \(k \).

A 3-track TM:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A multiple track TM starts with the input on the first track, all other tracks are blank.

\[
\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times \Gamma \times \Gamma) \times \{L, R\}
\]
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

• (⇒): Given standard TM M there exists a TM M’ with multiple tracks such that L(M) = L(M’).

 easy: M’ just use one track

• (⇐): Given a TM M with multiple tracks there exists a standard TM M’ such that L(M) = L(M’).

Encode each combination of symbols from Σ that can appear in a column of a track. Code would be the new tape alphabet.
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem: Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• (⇒): Given standard TM M there exists a TM M’ with semi-infinite tape such that L(M)=L(M’).
Given M, construct a 2-track semi-infinite TM M’
2-track TM is equivalent to a standard TM

- (⇐): Given a TM M with semi-infinite tape there exists a standard TM M' such that L(M) = L(M').

Easy, but check for falling off left end. Put a special marker there
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:

$$s^* : Q \times \Gamma^n \rightarrow Q \times \Gamma^n \times \mathcal{L}_1 \mathcal{R}_2 \cdots \mathcal{L}_n$$
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \(\leftarrow\): Given standard TM M, construct a multitape TM M’ such that \(L(M) = L(M')\).

• \(\Rightarrow\): Given n-tape TM M construct a standard TM M’ such that \(L(M) = L(M')\).

Construct M' to be a 2n-track TM

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Easy, just run it
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define δ:

```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
```

input tape (read only)

```
Control
Unit
```

```
<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>b</th>
<th>d</th>
</tr>
</thead>
</table>
```

read/write tape

really 2 tape TM
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists an off-line TM M’ such that $L(M) = L(M')$.

- Copy input over, run it just manipulating 2nd tape
- Just manipulating 2nd tape

- 4 track TM

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>b</td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td></td>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• (\Leftarrow): Given an off-line TM M there exists a standard TM M’ such that $L(M) = L(M')$.
Running Time of Turing Machines

Example:

Given \(L = \{a^n b^n c^n | n > 0 \} \). Given \(w \in \Sigma^* \), is \(w \) in \(L \)?

Write a 3-tape TM for this problem.

\[
\begin{align*}
\text{Start: Input on tape 1} \\
\text{Copy input to tapes 2 & 3} \\
\text{Repeat till all 'a's are marked} \\
\text{Simultaneously mark 'a's on tape 1} \\
\text{& mark 'b's on tape 2} \\
\text{on tape 3} \\
\text{Input strings of length } n \\
\text{in } O(n) \text{ time}
\end{align*}
\]

Standard TM running time \(O(n^2) \) faster running times w/multiple tapes.
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

\[\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\} \]
Theorem Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

• \(\Rightarrow\): Given standard TM \(M\), construct a 2-dim-tape TM \(M'\) such that \(L(M) = L(M')\).

Easy, just uses one row. Doesn’t know about UD directions.

• \(\Leftarrow\): Given 2-dim tape TM \(M\), construct a standard TM \(M'\) such that \(L(M) = L(M')\).

Number the cells with \(xy\) coordinates.
Construct M’ to be a 2-track TM
First track stores symbols markers (#) separator
Second track x-y coord
Positive numbers unary w/ 1's
Negative nos. unary with 0's
To add position #: #11 #1

<table>
<thead>
<tr>
<th>#</th>
<th>a</th>
<th>#</th>
<th>b</th>
<th>#</th>
<th>c</th>
<th>#</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>#</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>#</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>#</td>
<td>1</td>
</tr>
</tbody>
</table>

2-track TM is equiv standard TM
Definition: A nondeterministic Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

• (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M' such that $L(M)=L(M')$.

Easy, run it

• (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M' such that $L(M)=L(M')$.

Construct M' to be a 2-dim tape TM.
A step consists of making one move for each of the current machines.

For example: Consider the following transition:

$$\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\}$$

Being in state q_0 with input abc.
The one move has three choices, so 2 additional machines are started.

2-dim type TM is equiv. standard TM
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ:

$$\delta: Q \times \Sigma \times (Q \cup \Sigma \cup \Gamma)^2 \rightarrow \text{subsets of } Q \times \Sigma^* \times \Gamma^*$$
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n \mid n > 0 \} \)
 yes

2. \(L = \{ a^n b^n a^n b^n \mid n > 0 \} \)
 yes

3. \(L = \{ w \in \Sigma^* \mid \text{number of } a\text{'s equals number of } b\text{'s equals number of } c\text{'s}\} \),
 \(\Sigma = \{a, b, c\} \)
 yes
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• \((\Rightarrow):\) Given 2-stack NPDA, construct a 3-tape TM \(M'\) such that \(L(M) = L(M')\).
\(\Leftrightarrow\): Given standard TM M, construct a 2-stack NPDA M' such that \(L(M) = L(M')\).
Universal TM - a programmable TM

● Input:
 – an encoded TM M
 – input string w

● Output:
 – Simulate M on w
An encoding of a TM

Let TM \(M = \{ Q, \Sigma, \Gamma, \delta, q_1, B, F \} \)

- \(Q = \{ q_1, q_2, \ldots, q_n \} \)
 Designate \(q_1 \) as the start state.
 Designate \(q_2 \) as the only final state.
 \(q_n \) will be encoded as \(n \) 1’s

- Moves
 L will be encoded by 1
 R will be encoded by 11

- \(\Gamma = \{ a_1, a_2, \ldots, a_m \} \)
 where \(a_1 \) will always represent the B.
For example, consider the simple TM:

\[\Gamma = \{ \text{B}, \text{a}, \text{b} \} \]

which would be encoded as

\[\text{0101101011011010111011011010} \]

The TM has 2 transitions,

\[\delta(q_1, \text{a}) = (q_1, \text{a}, \text{R}), \quad \delta(q_1, \text{b}) = (q_2, \text{a}, \text{L}) \]

which can be represented as 5-tuples:

\[(q_1, \text{a}, q_1, \text{a}, \text{R}), (q_1, \text{b}, q_2, \text{a}, \text{L}) \]

Thus, the encoding of the TM is:

\[0101101011011010111011011010 \]
For example, the encoding of the TM above with input string “aba” would be encoded as:

010110101101101101101001101110110

is this valid?

Question: Given \(w \in \{0, 1\}^+ \), is \(w \) the encoding of a TM?
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)
 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)
 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a) = (q,b,R)$.)
 (c) apply the move
 • write on tape 2 (write b)
 • move on tape 2 (move right)
 • write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is countable if its elements have 1-1 correspondence with the positive integers.

Examples:

- $S = \{ \text{positive odd integers} \}$
- $S = \{ \text{real numbers} \}$
- $S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\}$
- $S = \{ \text{TM’s} \}$
- $S = \{ (i,j) \mid i, j > 0, \text{are integers} \}$
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[
\begin{array}{c}
\text{[a b c]}
\end{array}
\]

\[\uparrow\]

Definition: A linear bounded automaton (LBA) is a nondeterministic TM

\[M=(Q, \Sigma, \Gamma, \delta, q_0, B, F)\] such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of []’s. Thus,

\[\delta(q_i, [) = (q_j, [, R), \text{ and } \delta(q_i,]) = (q_j,], L)\]

Definition: Let \(M\) be a LBA.

\[L(M) = \{w \in (\Sigma - \{[,]\})^* | q_0[w] \vdash [x_1q_f x_2]\}\]

Example: \(L = \{a^n b^n c^n | n > 0\}\) is accepted by some LBA