Section: Recursively Enumerable Languages

Definition: A language \mathbf{L} is recursively enumerable if there exists a TM M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

Definition: A language \mathbf{L} is recursive if there exists a TM M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$ and M halts on every $\mathrm{w} \in \Sigma^{+}$.

To enumerate all $w \in \Sigma^{+}$in a recursive language L :

- Let M be a TM that recognizes L, $\mathrm{L}=\mathrm{L}(\mathrm{M})$.
- Construct 2-tape TM M

Tape 1 will enumerate the strings in Σ^{+}
Tape 2 will enumerate the strings in L.

- On tape 1 generate the next string v in Σ^{+}
- simulate M on v
if M accepts v, then write v on tape 2.

To enumerate all $w \in \Sigma^{+}$in a recursively enumerable language L :

Repeat forever

- Generate next string (Suppose k strings have been generated:
$\left.w_{1}, w_{2}, \ldots, w_{k}\right)$
- Run M for one step on w_{k}

Run \mathbf{M} for two steps on w_{k-1}.

Run \mathbf{M} for \mathbf{k} steps on w_{1}. If any of the strings are accepted then write them to tape 2 .

Theorem Let S be an infinite countable set. Its powerset 2^{S} is not countable.

Proof - Diagonalization

- S is countable, so it's elements can be enumerated.
$\mathbf{S}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6} \ldots\right\}$
Example, $\left\{s_{2}, s_{3}, s_{5}\right\}$ represented by

Example, set containing every other element from S, starting with s_{1} is $\left\{s_{1}, s_{3}, s_{5}, s_{7}, \ldots\right\}$ represented by

Suppose 2^{S} countable. Then we can emunerate all its elements: t_{1}, t_{2}, \ldots

Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^{*}. The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.
 Proof:

- Let $\Sigma=\{a\}$

Enumerate all TM's over Σ :

Theorem If languages L and \bar{L} are both RE, then L is recursive. Proof:

- $\exists M_{1}$ s.t. M_{1} can enumerate all elements in L.
$\exists M_{2}$ s.t. M_{2} can enumerate all elements in \bar{L}.
To determine if a string w is in \mathbf{L} or not in L

Theorem: If L is recursive, then \bar{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in \mathbf{L} or w is not in \mathbf{L}.
Construct TM M' that does the following. M ' first simulates $T M$ M.

Hierarchy of Languages:

Definition A grammar $\mathbf{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ is unrestricted if all productions are of the form

$$
u \rightarrow v
$$

where $u \in(\mathbf{V} \cup \mathbf{T})^{+}$and $v \in(\mathbf{V} \cup \mathbf{T})^{*}$ Example:
Let $\mathbf{G}=(\{\mathbf{S}, \mathbf{A}, \mathbf{X}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P}), \mathbf{P}=$

$$
\begin{aligned}
& \mathbf{S} \rightarrow \text { bAaaX } \\
& \text { bAa } \rightarrow \text { abA } \\
& \mathbf{A X} \rightarrow \lambda
\end{aligned}
$$

Example Find an unrestricted grammar G s.t. $\mathbf{L}(\mathbf{G})=\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$

$$
\begin{aligned}
& \mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{S}, \mathbf{P}) \\
& \mathbf{V}=\{\mathbf{S}, \mathbf{A}, \mathbf{B}, \mathbf{D}, \mathbf{E}, \mathbf{X}\} \\
& \mathbf{T}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \\
& \mathbf{P}=
\end{aligned}
$$

> 1) $\mathrm{S} \rightarrow \mathrm{AX}$
> 2) $\mathrm{A} \rightarrow \mathrm{aAbc}$
> 3) $\mathrm{A} \rightarrow \mathrm{aBbc}$
> 4) $\mathrm{Bb} \rightarrow \mathrm{bB}$
> 5) $\mathrm{Bc} \rightarrow \mathrm{D}$
> 6) $\mathrm{Dc} \rightarrow \mathrm{cD}$
> 7) $\mathrm{Db} \rightarrow \mathrm{bD}$
> 8) $\mathrm{DX} \rightarrow \mathrm{EXc}$

$\mathrm{S} \Rightarrow \mathrm{AX} \Rightarrow \mathrm{aAbcX} \Rightarrow$ aaAbcbcX \Rightarrow aaaBbcbcbcX

Theorem If G is an unrestricted grammar, then $L(G)$ is recursively enumerable.

Proof:

- List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$.

Proof:

- L is recursively enumerable.
\Rightarrow there exists a TM M such that $\mathbf{L}(\mathbf{M})=\mathbf{L}$ 。
$\mathbf{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$
$q_{0} w \stackrel{*}{\vdash} x_{1} q_{f} x_{2}$ for some $q_{f} \in \mathbf{F}$, $x_{1}, x_{2} \in \Gamma^{*}$
Construct an unrestricted grammar G s.t. $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$.
$S \stackrel{\text { * }}{\Rightarrow} w$
Three steps

1. $S \stackrel{*}{\Rightarrow} B \ldots B \# x q_{f} y B \ldots B$
2. $B \ldots B \# x q_{f} y B \ldots B \stackrel{*}{\Rightarrow}$
$B \ldots B \# q_{0} w B \ldots B$
3. $B \ldots B \# q_{0} w B \ldots B \stackrel{*}{\Rightarrow} w$

Definition A grammar G is context-sensitive if all productions are of the form

$$
x \rightarrow y
$$

where $x, y \in(V \cup T)^{+}$and $|x| \leq|y|$

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $\mathbf{L}=\mathbf{L}(\mathbf{G})$ or $\mathbf{L}=\mathbf{L}(\mathbf{G}) \cup\{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M)=L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.

