Section: Properties of Context-free Languages

Which of the following languages are CFL?

- $\mathbf{L}=\left\{a^{n} b^{n} c^{j} \mid 0<n \leq j\right\}$
- $\mathbf{L}=\left\{a^{n} b^{j} a^{n} b^{j} \mid n>0, j>0\right\}$
- $\mathbf{L}=\left\{a^{n} b^{j} a^{k} b^{p} \mid n+j \leq k+p, n>0, j>\right.$ $0, k>0, p>0\}$
- $\mathbf{L}=\left\{a^{n} b^{j} a^{j} b^{n} \mid n>0, j>0\right\}$

Pumping Lemma for Regular Language's: Let L be a regular language, Then there is a constant m such that $w \in L,|w| \geq m, w=x y z$ such that

- $|x y| \leq m$
- $|y| \geq 1$
- for all $i \geq 0, x y^{i} z \in L$

Pumping Lemma for CFL's Let L be any infinite CFL. Then there is a constant m depending only on L, such that for every string w in L, with $|w| \geq m$, we may partition $w=u v x y z$ such that:
$|v x y| \leq m$, (limit on size of substring)
$|v y| \geq 1,(v$ and y not both empty)
For all $i \geq 0, u v^{i} x y^{i} z \in \mathbf{L}$

- Proof: (sketch) There is a CFG G s.t. $L=L(G)$.

Consider the parse tree of a long string in L.
For any long string, some nonterminal N must appear twice in the path.

Example: Consider
$L=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$. Show L is not a CFL.

- Proof: (by contradiction)

Assume L is a CFL and apply the pumping lemma.
Let m be the constant in the pumping lemma and consider $w=a^{m} b^{m} c^{m}$. Note $|w| \geq m$.
Show there is no division of w into $u v x y z$ such that $|v y| \geq 1,|v x y| \leq m$, and $u v^{i} x y^{i} z \in \mathbf{L}$ for $i=0,1,2, \ldots$.

Thus, there is no breakdown of w into uvxyz such that $|v y| \geq 1$, $|v x y| \leq m$ and for all $i \geq 0, u v^{i} x y^{i} z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Example Why would we want to recognize a language of the type $\left\{a^{n} b^{n} c^{n}: n \geq 1\right\}$?

Example: Consider
$L=\left\{a^{n} b^{n} c^{p}: p>n>0\right\}$. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
$w=\ldots$ Note $|w| \geq m$.
Show there is no division of w into uvxyz such that $|v y| \geq 1,|v x y| \leq m$, and $u v^{i} x y^{i} z \in \mathbf{L}$ for $i=0,1,2, \ldots$.

Example: Consider $L=\left\{a^{j} b^{k}: k=j^{2}\right\}$. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
$w=$
Show there is no division of w into $u v x y z$ such that $|v y| \geq 1,|v x y| \leq m$, and $u v^{i} x y^{i} z \in \mathbf{L}$ for $i=0,1,2, \ldots$.
Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a 's and b 's, then $u v^{2} x y^{2} z \notin \mathbf{L}$ since there will be b 's before a 's. Thus, v and y can be only a 's, and b 's (not mixed).

Example: Consider
$L=\left\{w \bar{w} w: w \in \Sigma^{*}\right\}, \Sigma=\{a, b\}$, where \bar{w} is the string w with each occurence of a replaced by b and each occurence of b replaced by a. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
$w=$ \qquad
Show there is no division of w into $u v x y z$ such that $|v y| \geq 1,|v x y| \leq m$, and $u v^{i} x y^{i} z \in \mathbf{L}$ for $i=0,1,2, \ldots$.

Example: Consider $L=\left\{a^{n} b^{p} b^{p} a^{n}\right\} . \mathbf{L}$ is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w=a^{m} b^{m} b^{m} a^{m}$.

We can break w into uvxyz, with:

Chap 8.2 Closure Properties of CFL's Theorem CFL's are closed under union, concatenation, and star-closure.

- Proof:

Given 2 CFG $G_{1}=\left(V_{1}, T_{1}, S_{1}, P_{1}\right)$ and
$G_{2}=\left(V_{2}, T_{2}, S_{2}, P_{2}\right)$

- Union:

Construct G_{3} s.t. $\mathbf{L}\left(G_{3}\right)=\mathbf{L}\left(G_{1}\right)$
$\cup \mathbf{L}\left(G_{2}\right)$.
$G_{3}=\left(V_{3}, T_{3}, S_{3}, P_{3}\right)$

- Concatenation:

Construct G_{3} s.t. $\mathbf{L}\left(G_{3}\right)=$
$\mathbf{L}\left(G_{1}\right) \circ \mathbf{L}\left(G_{2}\right)$.
$G_{3}=\left(V_{3}, T_{3}, S_{3}, P_{3}\right)$

- Star-Closure

Construct G_{3} s.t. $\mathbf{L}\left(G_{3}\right)=\mathbf{L}\left(G_{1}\right)^{*}$
$G_{3}=\left(V_{3}, T_{3}, S_{3}, P_{3}\right)$

Theorem CFL's are NOT closed under intersection and complementation.

- Proof:
- Intersection:
- Complementation:

Theorem: CFL's are closed under regular intersection. If L_{1} is CFL and L_{2} is regular, then $L_{1} \cap L_{2}$ is CFL.

- Proof: (sketch) We take a NPDA for L_{1} and a DFA for L_{2} and construct a NPDA for $L_{1} \cap L_{2}$.
$M_{1}=\left(Q_{1}, \Sigma, \Gamma, \delta_{1}, q_{0}, z, F_{1}\right)$ is an
NPDA such that $\mathbf{L}\left(M_{1}\right)=L_{1}$.
$M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0}^{\prime}, F_{2}\right)$ is a DFA such that $\mathrm{L}\left(M_{2}\right)=L_{2}$.

Example of replacing arcs (NOT a Proof!):

We must formally define δ_{3}. If

then

Must show

if and only if

Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider
$L=\left\{a^{2 n} b^{2 m} c^{n} d^{m}: n, m \geq 0\right\}$. Show L is not a CFL.

- Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider
$w=a^{2 m} b^{2 m} c^{m} d^{m}$.
Show there is no division of w into $u v x y z$ such that $|v y| \geq 1,|v x y| \leq m$, and $u v^{i} x y^{i} z \in \mathbf{L}$ for $i=0,1,2, \ldots$.
Case 1: Neither v nor y can contain
2 or more distinct symbols. If v contains a 's and b 's, then $u v^{2} x y^{2} z \notin \mathbf{L}$ since there will be b 's before a 's. Thus, v and y can be only a 's, b 's, c^{\prime} s, or d 's (not mixed).
Case 2: $v=a^{t_{1}}$, then $y=a^{t_{2}}$ or $b^{t_{3}}$
($|v x y| \leq m$)
If $y=a^{t_{2}}$, then
$u v^{2} x y^{2} z=a^{2 m+t_{1}+t_{2}} b^{2 m} c^{m} d^{m} \notin L$ since $t_{1}+t_{2}>0$, the number of a 's is not twice the number of c 's.
If $y=b^{t_{3}}$, then
$u v^{2} x y^{2} z=a^{2 m+t_{1}} b^{2 m+t_{3}} c^{m} d^{m} \notin L$ since $t_{1}+t_{3}>0$, either the number of a 's (denoted $\mathbf{n}(a)$) is not twice $\mathbf{n}(c)$ or $\mathbf{n}(b)$ is not twice $\mathbf{n}(d)$.
Case 3: $v=b^{t_{1}}$, then $y=b^{t_{2}}$ or $c^{t_{3}}$
If $y=b^{t_{2}}$, then
$u v^{2} x y^{2} z=a^{2 m} b^{2 m+t_{1}+t_{2}} c^{m} d^{m} \notin L$ since $t_{1}+t_{2}>0, \mathbf{n}(b)>2 * \mathbf{n}(d)$.
If $y=c^{t_{3}}$, then
$u v^{2} x y^{2} z=a^{2 m} b^{2 m+t_{1}} c^{m+t_{3}} d^{m} \notin L$ since $t_{1}+t_{3}>0$, either $\mathbf{n}(b)>2 * \mathbf{n}(d)$ or
$2 * \mathbf{n}(c)>\mathbf{n}(a)$.
Case 4: $v=c^{t_{1}}$, then $y=c^{t_{2}}$ or $d^{t_{3}}$
If $y=c^{t_{2}}$, then
$u v^{2} x y^{2} z=a^{2 m} b^{2 m} c^{m+t_{1}+t_{2}} d^{m} \notin L$ since $t_{1}+t_{2}>0,2 * \mathbf{n}(c)>\mathbf{n}(a)$.
If $y=d^{t_{3}}$, then
$u v^{2} x y^{2} z=a^{2 m} b^{2 m} c^{m+t_{1}} d^{m+t_{3}} \notin L$ since $t_{1}+t_{3}>0$, either $2 * \mathbf{n}(c)>\mathbf{n}(a)$ or
$2 * \mathbf{n}(d)>\mathbf{n}(b)$.
Case 5: $v=d^{t_{1}}$, then $y=d^{t_{2}}$
then $u v^{2} x y^{2} z=a^{2 m} b^{2 m} c^{m} d^{m+t_{1}+t_{2}} \notin L$ since $t_{1}+t_{2}>0,2 * \mathbf{n}(d)>\mathbf{n}(c)$.
Thus, there is no breakdown of w into uvxyz such that $|v y| \geq 1$,
$|v x y| \leq m$ and for all $i \geq 0, u v^{i} x y^{i} z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.

