Section: Properties of Context-free Languages

Which of the following languages are CFL?

- $L = \{ a^n b^n c^j \mid 0 < n \leq j \}$
- $L = \{ a^n b^j a^n b^j \mid n > 0, j > 0 \}$
- $L = \{ a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \}$
- $L = \{ a^n b^j a^j b^n \mid n > 0, j > 0 \}$
Pumping Lemma for Regular Language’s: Let L be a regular language, Then there is a constant m such that $w \in L$, $|w| \geq m$, $w = xyz$ such that

- $|xy| \leq m$
- $|y| \geq 1$
- for all $i \geq 0$, $xy^iz \in L$
Pumping Lemma for CFL’s Let \(L \) be any infinite CFL. Then there is a constant \(m \) depending only on \(L \), such that for every string \(w \) in \(L \), with \(|w| \geq m\), we may partition \(w = uvxyz \) such that:

\[
|vxy| \leq m, \text{ (limit on size of substring)} \\
|vy| \geq 1, \text{ (}v\text{ and }y\text{ not both empty)}
\]

For all \(i \geq 0, uv^i xy^i z \in L \)

● Proof: (sketch) There is a CFG \(G \) s.t. \(L = L(G) \).

Consider the parse tree of a long string in \(L \).

For any long string, some nonterminal \(N \) must appear twice in the path.
Example: Consider
\[L = \{a^n b^n c^n : n \geq 1\} \]. Show \(L \) is not a CFL.

- Proof: (by contradiction)
 Assume \(L \) is a CFL and apply the pumping lemma.
 Let \(m \) be the constant in the pumping lemma and consider
 \(w = a^m b^m c^m \). Note \(|w| \geq m \).
 Show there is no division of \(w \) into
 \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \),
 and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).
Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^i xy^i z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.
Example: Why would we want to recognize a language of the type \(\{a^nb^n c^n : n \geq 1\} \)?

Example: Consider

\[L = \{a^nb^n c^p : p > n > 0\}. \] Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider

\[w = \underline{\text{__________}} \] Note \(|w| \geq m \).

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).
Example: Consider \(L = \{a^j b^k : k = j^2 \} \). Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider

\[w = \text{___________} \]

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2 xy^2 z \notin L \) since there will be \(b \)'s before \(a \)'s. Thus, \(v \) and \(y \) can be only \(a \)'s, and \(b \)'s (not mixed).
Example: Consider
$L = \{w\overline{w}w : w \in \Sigma^*\}$, $\Sigma = \{a, b\}$, where \overline{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. Show L is not a CFL.

Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider

$w = \underline{\text{___________}}$

Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.
Example: Consider $L = \{ a^n b^p b^p a^n \}$. L is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w = a^m b^m b^m a^m$.

We can break w into $uvxyz$, with:
Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

• Proof:

Given two CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

- Union:

Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.

$G_3 = (V_3, T_3, S_3, P_3)$
– Concatenation:
 Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

– Star-Closure
 Construct G_3 s.t. $L(G_3) = L(G_1)^*$
 $G_3 = (V_3, T_3, S_3, P_3)$
Theorem CFL’s are NOT closed under intersection and complementation.

• Proof:
 – Intersection:
– Complementation:
Theorem: CFL’s are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• Proof: (sketch) We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

$M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):
We must formally define δ_3. If

then

Must show

if and only if
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?
Example: Consider
$L = \{a^{2n}b^{2m}c^nd^m : n, m \geq 0\}$. Show L is
not a CFL.

- Proof: Assume L is a CFL and
apply the pumping lemma. Let m
be the constant in the pumping
lemma and consider
$w = a^{2m}b^{2m}c^md^m$.
Show there is no division of w into
$uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$,
and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.

Case 1: Neither v nor y can contain
2 or more distinct symbols. If v
contains a’s and b’s, then $uv^2xy^2z \notin L$
since there will be b’s before a’s.
Thus, v and y can be only a’s, b’s,
c’s, or d’s (not mixed).

Case 2: $v = a^{t_1}$, then $y = a^{t_2}$ or b^{t_3}
($|vxy| \leq m$)
If $y = a^{t_2}$, then
\[uv^2xy^2z = a^{2m+t_1+t_2}b^{2m}c^{m}d^{m} \notin L \text{ since } t_1 + t_2 > 0, \text{ the number of } a\text{'s is not twice the number of } c\text{'s.} \\
\text{If } y = b^{t_3}, \text{ then} \\
uv^2xy^2z = a^{2m+t_1}b^{2m+t_3}c^{m}d^{m} \notin L \text{ since } t_1 + t_3 > 0, \text{ either the number of } a\text{'s (denoted } n(a)) \text{ is not twice } n(c) \text{ or } n(b) \text{ is not twice } n(d). \\
\text{Case 3: } v = b^{t_1}, \text{ then } y = b^{t_2} \text{ or } c^{t_3} \\
\text{If } y = b^{t_2}, \text{ then} \\
uv^2xy^2z = a^{2m}b^{2m+t_1+t_2}c^{m}d^{m} \notin L \text{ since } t_1 + t_2 > 0, n(b) > 2*n(d). \\
\text{If } y = c^{t_3}, \text{ then} \\
uv^2xy^2z = a^{2m}b^{2m+t_1}c^{m+t_3}d^{m} \notin L \text{ since } t_1 + t_3 > 0, \text{ either } n(b) > 2*n(d) \text{ or } 2*n(c) > n(a). \\
\text{Case 4: } v = c^{t_1}, \text{ then } y = c^{t_2} \text{ or } d^{t_3} \\
\text{If } y = c^{t_2}, \text{ then} \\
uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1+t_2}d^{m} \notin L \text{ since } t_1 + t_2 > 0, 2*n(c) > n(a). \\
\text{If } y = d^{t_3}, \text{ then}
\[uv^2xy^2z = a^{2m}b^{2m}c^{m+t_1}d^{m+t_3} \notin L \text{ since } t_1 + t_3 > 0, \text{ either } 2n(c) > n(a) \text{ or } 2n(d) > n(b). \]

Case 5: \(v = d^{t_1} \), then \(y = d^{t_2} \)

then \(uv^2xy^2z = a^{2m}b^{2m}c^{m}d^{m+t_1+t_2} \notin L \)

since \(t_1 + t_2 > 0, 2n(d) > n(c) \).

Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \) and for all \(i \geq 0 \), \(uv^ixy^iz \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.