Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S₀.

\[S₀ \rightarrow S \mid \lambda \]

Theorem (Substitution) Let G be a CFG. Suppose G contains

\[A \rightarrow x₁Bx₂ \]

where A and B are different variables, and B has the productions

\[B \rightarrow y₁|y₂|\ldots|yₙ \]

Then can construct G’ from G by deleting

\[A \rightarrow x₁Bx₂ \]

from P and adding to it

\[A \rightarrow x₁y₁x₂|x₁y₂x₂|\ldots|x₁yₙx₂ \]

Then, \(L(G)=L(G’) \).

Example:

\[S \rightarrow aBa \]
\[B \rightarrow aS \mid a \]

Definition: A production of the form \(A \rightarrow Ax \), \(A∈V, x∈(V∪T)^* \) is *left recursive*.

1
Example Previous expression grammar was left recursive.

\[
E \rightarrow E + T \mid T \\
T \rightarrow T * F \mid F \\
F \rightarrow I \mid (E) \\
I \rightarrow a \mid b
\]

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a sentential form that has other terminals in it.

Derivation of \(a + b + a + a\) is:

\[
E \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \Rightarrow a + T + T + T
\]

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and no other terminals.

Theorem (Removing Left recursion) Let \(G=(V,T,S,P)\) be a CFG. Divide productions for variable \(A\) into left-recursive and non left-recursive productions:

\[
A \rightarrow A x_1 \mid A x_2 \mid \ldots \mid A x_n \\
A \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m
\]

where \(x_i, y_i\) are in \((V \cup T)^*\).

Then \(G'=(V \cup \{Z\}, T, S, P')\) and \(P'\) replaces rules of form above by

\[
A \rightarrow y_i | y_i Z, \ i = 1, 2, \ldots, m \\
Z \rightarrow x_i | x_i Z, \ i = 1, 2, \ldots, n
\]

Example:

\[
E \rightarrow E + T | T \quad \text{becomes}
\]

\[
T \rightarrow T * F | F \quad \text{becomes}
\]

Now, Derivation of \(a + b + a + a\) is:
Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or productions s.t. \(L(G) = L(G')\).

To Remove Useless Productions:

Let G=(V,T,S,P).

I. Compute \(V_1=\{\text{Variables that can derive strings of terminals}\}\)

1. \(V_1=\emptyset\)
2. Repeat until no more variables added
 - For every \(A \in V\) with \(A \rightarrow x_1x_2\ldots x_n\), \(x_i \in (T^* \cup V_1)\), add A to \(V_1\)
3. \(P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^*\)

Then \(G_1=(V_1,T,S,P_1)\) has no variables that can’t derive strings.

II. Draw Variable Dependency Graph

For \(A \rightarrow xBy\), draw \(A \rightarrow B\).

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G’ is s.t. \(L(G) = L(G')\) and G’ has no useless productions.

Example:

S → aB | bA
A → aA
B → Sa | b
C → cBc | a
D → bCb
E → Aa | b
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{A \mid \exists$ production $A \to \lambda \}$
2. Repeat until no more additions
 - if $B \to A_1A_2...A_m$ and $A_i \in V_n$ for all i, then put B in V_n
3. Construct G' with productions P' s.t.
 - If $A \to x_1x_2...x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.

Example:

S \to Ab
A \to BCB $|$ Aa
B \to b $|$ λ
C \to cC $|$ λ
Definition Unit Production

\[A \rightarrow B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \rightarrow B \]
\[B \rightarrow a \mid ab \]

But what if we have

\[A \rightarrow B \]
\[B \rightarrow C \]
\[C \rightarrow A \]

Theorem (Remove unit productions) Let \(G = (V,T,S,P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G' = (V',T',S,P') \) that does not have any unit-productions and \(L(G) = L(G') \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow B \) (Draw a dependency graph)
2. Construct \(G' = (V',T',S,P') \) by
 (a) Put all non-unit productions in \(P' \)
 (b) For all \(A \Rightarrow B \) s.t. \(B \rightarrow y_1 | y_2 | \ldots y_n \in P' \), put \(A \rightarrow y_1 | y_2 | \ldots y_n \in P' \)
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A

Theorem Let L be a CFL that does not contain λ. Then ∃ a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \to BC \quad \text{or} \quad A \to a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.
2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \to x_i \).
3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

\[
\begin{align*}
S &\to CBcd \\
B &\to b \\
C &\to Cc \mid e
\end{align*}
\]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots, A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

 \[
 \begin{align*}
 A_i & \rightarrow A_jx_j, \ j > i \\
 Z_i & \rightarrow A_jx_j, \ j \leq n \\
 A_i & \rightarrow ax_i
 \end{align*}
 \]

 where \(a \in T, x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}, \) etc until all productions are in the correct form.