Section: Decidability

Computability A function f with domain D is *computable* if there exists some TM M such that M computes ffor all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem. The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w? Theorem The halting problem is undecidable.

Proof: (by contradiction)

Assume there is a TM H (or algorithm) that solves this problem.
TM H has 2 final states, q_y represents yes and q_n represents no.

$$H(w_M, w) = \begin{cases} \text{halts } q_y \text{ if } M \text{ halts on } w \\ \text{halts } q_n \text{ if } M \text{ doesn't halt on } w \end{cases}$$

TM H always halts in a final state.

Construct TM H' from H

 $H'(w_M, w) = \begin{cases} \text{halts} & \text{if M not halt on } w \\ \text{not halt if M halts on } w \end{cases}$

Construct TM \hat{H} from H'

 $\hat{H}(w_M) = \begin{cases} \text{halts} & \text{if M not halt on } w_M \\ \text{not halt if M halts on } w_M \end{cases}$

Note that \hat{H} is a TM.

There is some encoding of it, say $\hat{w}_{\hat{H}}$.

What happens if we run \hat{H} with input $\hat{w}_{\hat{H}}$?

Theorem If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

- Proof: Let L be an RE language over Σ .
 - Let M be the TM such that L=L(M).

Let H be the TM that solves the halting problem.

A problem A is *reduced* to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable. State-entry problem Given TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$, state $q \in Q$, and string $w \in \Sigma^*$, is state q ever entered when M is applied to w?

This is an undecidable problem!

• Proof:

TM E solves state-entry problem

$$E'(w_M, w) = \begin{cases} M \text{ halts on } w & \text{if } ?\\ M \text{ doesn't halt on } w & \text{if } ? \end{cases}$$