
Section: Decidability

Computability A function f with
domain D is computable if there exists
some TM M such that M computes f
for all values in its domain.

Decidability A problem is decidable if
there exists a TM that can answer yes
or no to every statement in the
domain of the problem.

1



The Halting Problem

Domain: set of all TMs and all strings
w.

Question: Given coding of M and w,
does M halt on w?

2



Theorem The halting problem is
undecidable.

Proof: (by contradiction)

• Assume there is a TM H (or
algorithm) that solves this problem.

TM H has 2 final states, qy
represents yes and qn represents no.

H(wM , w) =


halts qy if M halts on w
halts qn if M doesn′t halt on w

TM H always halts in a final state.

3



Construct TM H’ from H

H ′(wM , w) =


halts if M not halt on w
not halt if M halts on w

Construct TM Ĥ from H’

Ĥ(wM ) =


halts if M not halt on wM
not halt if M halts on wM

Note that Ĥ is a TM.

There is some encoding of it, say
ŵ
Ĥ

.

What happens if we run Ĥ with
input ŵ

Ĥ
?

4



Theorem If the halting problem were
decidable, then every recursively
enumerable language would be
recursive. Thus, the halting problem
is undecidable.

• Proof: Let L be an RE language
over Σ.

Let M be the TM such that
L=L(M).

Let H be the TM that solves the
halting problem.

5



A problem A is reduced to problem B
if the decidability of B follows from
the decidability of A. Then if we know
B is undecidable, then A must be
undecidable.

6



State-entry problem Given TM
M=(Q,Σ,Γ, δ, q0, B,F), state q ∈Q, and
string w ∈ Σ∗, is state q ever entered
when M is applied to w?

This is an undecidable problem!

• Proof:

TM E solves state-entry problem

E′(wM , w) =


M halts on w if ?
M doesn′t halt on w if ?

7


