Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

\[
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
\]

Is ba in $L(G)$? Running time?

Remove λ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

\[
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
\]

Is ba in $L(G)$? Running time?

Top-down Parser:

- Start with S and try to derive the string.

\[
S \rightarrow aS \mid b
\]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[G=(V,T,S,P) \]
\[w,v \in (V \cup T)^* \]
\[a \in T \]
\[X,A,B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: FIRST(w) = the set of terminals that begin strings derived from w.

- If \(w \Rightarrow^* av \) then
 - \(a \) is in FIRST(w)
- If \(w \Rightarrow^* \lambda \) then
 - \(\lambda \) is in FIRST(w)

To compute FIRST:

1. FIRST(a) = \{a\}
2. FIRST(X)
 - (a) If \(X \Rightarrow aw \) then
 - \(a \) is in FIRST(X)
 - (b) IF \(X \Rightarrow \lambda \) then
 - \(\lambda \) is in FIRST(X)
 - (c) If \(X \Rightarrow Aw \) and \(\lambda \in \text{FIRST}(A) \) then
 - Everything in FIRST(w) is in FIRST(X)
3. In general, FIRST(X₁X₂X₃..Xₖ) =
 - FIRST(X₁)
 - \(\cup \) FIRST(X₂) if \(\lambda \) is in FIRST(X₁)
 - \(\cup \) FIRST(X₃) if \(\lambda \) is in FIRST(X₁) and \(\lambda \) is in FIRST(X₂)
 - ...
 - \(\cup \) FIRST(Xₖ) if \(\lambda \) is in FIRST(X₁)
 - and \(\lambda \) is in FIRST(X₂)
 - ... and \(\lambda \) is in FIRST(Xₖ₋₁)
 - \(- \{\lambda\} \) if \(\lambda \notin \text{FIRST}(X_J) \) for all J
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
\begin{align*}
S &\rightarrow aSc \mid B \\
B &\rightarrow b \mid \lambda
\end{align*}
\]

\[
\text{FIRST}(B) = \\
\text{FIRST}(S) = \\
\text{FIRST}(Sc) =
\]

Example

\[
\begin{align*}
S &\rightarrow BCD \mid aD \\
A &\rightarrow CEB \mid aA \\
B &\rightarrow b \mid \lambda \\
C &\rightarrow dB \mid \lambda \\
D &\rightarrow cA \mid \lambda \\
E &\rightarrow e \mid fE
\end{align*}
\]

\[
\begin{align*}
\text{FIRST}(S) = \\
\text{FIRST}(A) = \\
\text{FIRST}(B) = \\
\text{FIRST}(C) = \\
\text{FIRST}(D) = \\
\text{FIRST}(E) =
\end{align*}
\]

Definition: \(\text{FOLLOW}(X) = \) set of terminals that can appear to the right of \(X \) in some derivation.

If \(S \xrightarrow{*} wAav \) then
\[
a \text{ is in } \text{FOLLOW}(A)
\]

(where \(w \) and \(v \) are strings of terminals and variables, \(a \) is a terminal, and \(A \) is a variable)
To compute FOLLOW:

1. $ is in FOLLOW(S)
2. If $A \rightarrow wBv$ and $v \neq \lambda$ then
 \[\text{FIRST}(v) - \{\lambda\} \text{ is in FOLLOW}(B) \]
3. IF $A \rightarrow wB$ OR
 \[A \rightarrow wBv \text{ and } \lambda \text{ is in FIRST}(v) \] then
 \[\text{FOLLOW}(A) \text{ is in FOLLOW}(B) \]
4. λ is never in FOLLOW

Example:

\[
\begin{align*}
S & \rightarrow aSc \mid B \\
B & \rightarrow b \mid \lambda
\end{align*}
\]

FOLLOW(S) =
FOLLOW(B) =

Example:

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \lambda \\
C & \rightarrow dB \mid \lambda \\
D & \rightarrow cA \mid \lambda \\
E & \rightarrow e \mid fE
\end{align*}
\]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =