Announcements:

- This is a math course with applications. Prereq: Compsci 230 or equivalent, CompSci 201.
- Course web page:
www.cs.duke.edu/courses /
spring21/compsci334
Familiarize yourself with all parts of the web page.
- Read Chapter 1 in the Linz book for next time.
- Complete the reading quiz on Sakai.
- Course bulletin board: Piazza

What will we do in Compsci 334 ?
Questions

- Can you write a program to determine if a string is an integer? $9998.89 \quad 8 \mathrm{abab} \quad 789342$
- Can you do this if your machine had no additional memory other than the program? (can't store any values and look at them again)
- Can you write a program to determine if the following are correct arithmetic expressions?

$$
\begin{gathered}
((34+7 *(18 / 6))) \\
(((((((a+b)+c) * d(e+f)))))
\end{gathered}
$$

- Can you do this if your machine had no additional memory other than the program?
- Can you write a program to determine the value of the following expression?

$$
((34+7 *(18 / 6)))
$$

- Can you write a program to determine if a file is a valid Java program?
- Can you write a program to determine if a Java program given as input will ever halt?

Language Hierarchy

Grammars

Automata

Power of Machines

automata
 Can do?
 Can't do?

FA integers arith expr
(no memory)
PDA
arith expr
compute expr (stack)

TM
compute expr decide if halts (infinite)

Application
Compiler

- Our focus - Question: Given a program in some language (say Java or $\mathbf{C}++$) - is it valid?
- Question: language L, program P is P valid?
- Other things to consider, how is the compilation process different for different programming languages? (Java vs C ++ ?)

Stages of a Compiler

assembly language program

L-Systems - Model the Growth of Plants

Chapter 1 - Set Theory
A Set is a collection of elements.
$\mathrm{A}=\{1,4,6,8\}, \mathrm{B}=\{2,4,8\}$,
$\mathrm{C}=\{3,6,9,12, \ldots\}, \mathrm{D}=\{4,8,12,16, \ldots\}$

- (union) $\mathrm{A} \cup \mathrm{B}=$
- (intersection) $\mathbf{A} \cap \mathrm{B}=$
- $\mathrm{C} \cap \mathrm{D}=$
- (member of) $42 \in \mathrm{C}$?
- (subset) $\mathrm{B} \subset \mathrm{C}$?
- $\mathrm{B} \cap \mathrm{A} \subseteq \mathrm{D}$?
- $|\mathbf{B}|=$
- (product) $\mathbf{A} \times \mathbf{B}=$
- $|\mathbf{A} \times \mathbf{B}|=$
- $\emptyset \in \mathrm{B} \cap \mathrm{C}$?
- (powerset) $2^{B}=$

Example What are all the subsets of $\{3,5\}$?

How many subsets does a set S have?
$|S|$ number of subsets
0
1
2
3
4

How do you prove? Set \mathbf{S} has $2^{|S|}$ subsets.

Technique: Proof by Induction

1. Basis: $P(1)$?
2. I.H.

Assume $P(n)$ is true for $1,2, \ldots, n$ 3. I.S.

Show $P(n+1)$ is true (using I.H.)

Proof of Example:

1. Basis:

2. I.H. Assume
3. I.S. Show

Ch. 1: 3 Major Concepts

- languages
- grammars
- automata

Languages

- Σ - set of symbols, alphabet
- string - finite sequence of symbols
- language - set of strings defined over Σ
alphabet Σ
Examples
- $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$ $\mathbf{L}=\{0,1,2, \ldots, 12,13,14, \ldots\}$
- $\Sigma=\{a, b, c\}$

$$
\mathbf{L}=\{a b, a c, c a b b\}
$$

- $\Sigma=\{a, b\}$

$$
\mathbf{L}=\left\{a^{n} b^{n} \mid n>0\right\}
$$

Notation

- symbols in alphabet: a, b, c, d, ... - string names: u, v, w, \ldots

Definition of concatenation

Let $\mathbf{w}=a_{1} a_{2} \ldots a_{n}$ and $\mathbf{v}=b_{1} b_{2} \ldots b_{m}$
Then $w \circ v$ OR $\mathbf{w v}=$

String Operations

strings: $\mathbf{w}=\mathrm{abbc}, \mathrm{v}=\mathrm{ab}, \mathrm{u}=\mathbf{c}$

- size of string
$|w|+|v|=$
- concatenation
$v^{3}=\mathbf{v v v}=\mathbf{v} \circ \mathbf{v} \circ \mathbf{v}=$
- $v^{0}=$
- $w^{R}=$
- $\left|v v^{R} w\right|=$
- ab $\circ \lambda=$

Definition

Σ^{*} concatenate 0 or more
Example
$\Sigma=\{a, b\}$
$\Sigma^{*}=$
$\Sigma^{+}=$

Examples

$\Sigma=\{a, b, c\}, L_{1}=\{a b, b c, a b a\}$,
$L_{2}=\{c, b c, b c c\}$

- $L_{1} \cup L_{2}=$
- $L_{1} \cap L_{2}=$
- $\overline{L_{1}}=$
- $\overline{L_{1} \cap L_{2}}=$
- $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}=$

Definition

$$
\begin{aligned}
& L^{0}=\{\lambda\} \\
& L^{2}=L \circ L \\
& L^{3}=L \circ L \circ L \\
& L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \ldots \\
& L^{+}=L^{1} \cup L^{2} \cup L^{3} \ldots
\end{aligned}
$$

Grammars
Grammar for english
$<$ sentence $>\rightarrow$
<subject><verb><d.o.>
$<$ subject $>\rightarrow<$ noun $>\mid$
$<$ article $><$ noun $>$
$<$ verb $>\rightarrow$ hit \mid ran \mid ate
$<$ d.o. $>\rightarrow<$ article $><$ noun $>\mid<$ noun $>$
$<$ noun $>\rightarrow$ Fritz \mid ball
$<$ article $>\rightarrow$ the \mid an \mid a

Examples (derive a sentence)
Fritz hit the ball.
<sentence> -> <subject><verb><d.o>
-> <noun><verb><d.o>
-> Fritz <verb><d.o.>
-> Fritz hit <d.o.>
-> Fritz hit <article><noun>
-> Fritz hit the <noun>
-> Fritz hit the ball

Can we also derive the sentences?

The ball hit Fritz.

The ball ate the ball
Syntactically correct?
Semantically correct?

Grammar
$G=(V, T, S, P)$ where

- V - variables (or nonterminals)
- T - terminals
- S - start variable $(\mathbf{S} \in \mathrm{V})$
- P - productions (rules)
$\mathbf{x} \rightarrow \mathbf{y} \in(\mathbf{V} \cup \mathbf{T})^{+}, \mathbf{y} \in(\mathbf{V} \cup \mathbf{T})^{*}$
Definition
$\mathrm{w} \Rightarrow \mathrm{z} \quad \mathrm{w}$ derives z
$\mathbf{w} \xrightarrow{*} \mathbf{z}$ derives in 0 or more steps
$w \stackrel{ \pm}{\Rightarrow} \mathbf{z}$ derives in 1 or more steps

Definition
$\mathbf{G}=(\mathbf{V}, \mathbf{T}, \mathbf{S}, \mathbf{P})$
$\mathbf{L}(\mathbf{G})=\left\{\mathbf{w} \in T^{*} \mid \mathbf{S} \stackrel{*}{\Rightarrow} \mathbf{w}\right\}$

Example

$\mathbf{G}=(\{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P})$
$\mathbf{P}=\{\mathbf{S} \rightarrow \mathbf{a} \mathbf{a}, \mathbf{S} \rightarrow \mathbf{b}\}$
$\mathrm{L}(\mathrm{G})=$

Example

$\mathbf{L}(\mathbf{G})=\left\{a^{n} c c b^{n} \mid n>0\right\}$
$\mathrm{G}=$

Example
$\mathbf{G}=(\{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P})$
$\mathbf{P}=\{\mathbf{S} \rightarrow \mathbf{a S b}, \mathbf{S} \rightarrow \mathbf{S S}, \mathbf{S} \rightarrow \mathbf{a b}\}$
Which of these strings
$a a b b, a b a b, a b b a, b a b a b$ can be generated by this grammar? Show the derivations.
$\mathrm{L}(\mathrm{G})=$

Automata

Abstract model of a digital computer

