Section: Finite Automata

Deterministic Finite Accepter (or Automata)
$\mathrm{A} \mathbf{D F A}=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathbf{F}\right)$
input tape

where
Q is finite set of states
Σ is tape (input) alphabet
q_{0} is initial state
$\mathrm{F} \subseteq \mathrm{Q}$ is set of final states.
$\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$

Example: DFA that accepts even binary numbers.
 Transition Diagram:

$\mathrm{M}=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, \mathbf{F}\right)=$

Tabular Format

	01
q 0	
q 1	

Example of a move: $\delta(\mathbf{q} 0,1)=$

Algorithm for DFA:

Start in start state with input on tape $\mathrm{q}=$ current state
$\mathrm{s}=$ current symbol on tape while (s $!=$ blank) do
$\mathbf{q}=\delta(\mathbf{q}, \mathbf{s})$
$\mathrm{s}=$ next symbol to the right on tape if $\mathbf{q} \in \mathbf{F}$ then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

3)

4)

Definition:
$\delta^{*}(q, \lambda)=q$
$\delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right)$

Definition The language accepted by a
DFA $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathrm{~F}\right)$ is set of all strings on Σ accepted by M. Formally, $\mathbf{L}(\mathbf{M})=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \in F\right\}$

Trap State

Example: L(M) =

Example:

$\mathbf{L}=\left\{w \in \Sigma^{*} \mid \mathbf{w}\right.$ has an even number of a's and an even number of b's\}

Example: DFA that accepts even binary numbers that have an even number of 1's.

Definition A language is regular iff there exists DFA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

Chapter 2.2
Nondeterministic Finite Automata (or Accepter)

Definition
An $\mathbf{N F A}=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, \mathbf{F}\right)$
where
Q is finite set of states
Σ is tape (input) alphabet
q_{0} is initial state
$\mathbf{F} \subseteq \mathbf{Q}$ is set of final states.
$\delta: \mathbf{Q} \times(\Sigma \cup\{\lambda\}) \rightarrow 2^{Q}$

Example

Note: In this example $\delta\left(q_{0}, a\right)=$ $\mathrm{L}=$

Example

$$
\mathbf{L}=\left\{(a b)^{n} \mid n>0\right\} \cup\left\{a^{n} b \mid n>0\right\}
$$

Definition $q_{j} \in \delta^{*}\left(q_{i}, w\right)$ if and only if there is a walk from q_{i} to q_{j} labeled w.

Example From previous example:
$\delta^{*}\left(q_{0}, a b\right)=$
$\delta^{*}\left(q_{0}, a b a\right)=$

Definition: For an NFA M, $\mathbf{L}(\mathbf{M})=\left\{w \in \Sigma^{*} \mid \delta^{*}\left(q_{0}, w\right) \cap F \neq \emptyset\right\}$
2.3 NFA vs. DFA: Which is more powerful?

Example:

Theorem Given an NFA
$M_{N}=\left(Q_{N}, \Sigma, \delta_{N}, q_{0}, F_{N}\right)$, then there
exists a DFA $M_{D}=\left(Q_{D}, \Sigma, \delta_{D}, q_{0}, F_{D}\right)$
such that $L\left(M_{N}\right)=L\left(M_{D}\right)$.
Proof:
We need to define M_{D} based on M_{N}.
$Q_{D}=$
$F_{D}=$
δ_{D} :

Algorithm to construct M_{D}

1. start state is $\left\{q_{0}\right\} \cup$ closure $\left(q_{0}\right)$
2. While can add an edge
(a) Choose a state $\mathbf{A}=\left\{q_{i}, q_{j}, \ldots q_{k}\right\}$ with missing edge for $a \in \Sigma$
(b) Compute $\mathrm{B}=$ $\delta^{*}\left(q_{i}, a\right) \cup \delta^{*}\left(q_{j}, a\right) \cup \ldots \cup \delta^{*}\left(q_{k}, a\right)$
(c) Add state B if it doesn't exist
(d) add edge from A to B with label a
3. Identify final states
4. if $\lambda \in L\left(M_{N}\right)$ then make the start state final.

Example:

Properties and Proving - Problem 1
Consider the property
Replace_one_a_with_b or R1awb for short. If L is a regular, prove $R 1 a w b(L)$ is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Example 1: Consider $\mathbf{L}=\{a a a b, b b a a\}$
R1awb $(\mathrm{L})=$
Example 2: Consider $\Sigma=\{a, b\}, \mathbf{L}=$ $\left\{w \in \Sigma^{*} \mid \mathbf{w}\right.$ has an even number of a's and an even number of b's\}

R1awb $(\mathrm{L})=$
Proof:

Properties and Proving - Problem 2
Consider the property
Truncate_all_preceeding b's or
TruncPreb for short. If L is a regular, prove TruncPreb (L) is regular.
The property TruncPreb applied to a language L removes all preceeding b's in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).
Example 1: Consider $\mathbf{L}=\{a a a b, b b a a\}$
TruncPreb(L) =
Example 2: Consider $L=$ $\left\{(b b a)^{n} \mid n>0\right\}$
TruncPreb(L) =
Proof:

Minimizing Number of states in DFA
Why?
Algorithm

- Identify states that are indistinguishable
These states form a new state
Definition Two states p and q are indistinquishable if for all $w \in \Sigma^{*}$

$$
\begin{aligned}
& \delta^{*}(q, w) \in F \Rightarrow \delta^{*}(p, w) \in F \\
& \delta^{*}(p, w) \notin F \Rightarrow \delta^{*}(q, w) \notin F
\end{aligned}
$$

Definition Two states pand q are distinquishable if $\exists w \in \Sigma^{*}$ s.t. $\delta^{*}(q, w) \in F \Rightarrow \delta^{*}(p, w) \notin F \mathbf{O R}$ $\delta^{*}(q, w) \notin F \Rightarrow \delta^{*}(p, w) \in F$

Example:

Example:

