Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F) \)

where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(q_0 \) is initial state
- \(F \subseteq Q \) is set of final states.
- \(\delta : Q \times \Sigma \rightarrow Q \)
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]

\begin{tabular}{c|cc}
 & 0 & 1 \\
\hline
q0 & q1 & q1 \\
q1 & q0 & q1 \\
\end{tabular}

Example of a move: \(\delta(q_0,1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = \delta(q,s)
 s = next symbol to the right on tape
if q\in F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0

2) 1 0 0

3) 1 0 0

4) 1 0 0
Definition:

\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally, \(L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \)
Trap State

Example: \(L(M) = \)
Example:

\(L = \{ w \in \Sigma^* \mid \text{w has an even number of a’s and an even number of b’s} \} \)
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. $L=L(M)$.
Chapter 2.2
Nondeterministic Finite Automata (or Accepter)
Definition
An NFA = (Q, \Sigma, \delta, q_0, F)
where
Q is finite set of states
\Sigma is tape (input) alphabet
q_0 is initial state
F \subseteq Q is set of final states.
\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q
Example

Note: In this example $\delta(q_0, a) =$

$L =$
Example

\[L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \]
Definition \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\[
\delta^*(q_0, ab) =
\]

\[
\delta^*(q_0, aba) =
\]

Definition: For an NFA \(M \),

\[
L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}
\]
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA $M_N = (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D =$

$F_D =$

$\delta_D =$
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property
Replace_one_a_with_b or R1awb for short. If L is a regular, prove
R1awb(L) is regular.

The property R1awb applied to a language L replaces one \(a \) in each string with a \(b \). If a string does not have an \(a \), then the string is not in R1awb(L).

Example 1: Consider \(L = \{aaab, bbaa\} \)
R1awb(L)=

Example 2: Consider \(\Sigma = \{a, b\}, \ L = \{w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\} \)
R1awb(L)=

Proof:
Properties and Proving - Problem 2

Consider the property

Truncate_all_preceeding_b’s or
TruncPreb for short. If L is a regular,
prove TruncPreb(L) is regular.

The property TruncPreb applied to a
language L removes all preceeding b’s
in each string. If a string does not
have an preceeding b, then the string
is the same in TruncPreb(L).

Example 1: Consider $L=\{aaab, bbba\}$

$\text{TruncPreb}(L)=\$

Example 2: Consider $L =
\{(bba)^n \mid n > 0\}$

$\text{TruncPreb}(L)=\$

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 - These states form a new state

Definition Two states \(p \) and \(q \) are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states \(p \) and \(q \) are distinguishable if \(\exists w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR } \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: