Compsci 334 - Mathematical Foundations of CS Dr. S. Rodger
Section: Pushdown Automata (Ch. 7) (handout)

Ch. 7-Pushdown Automata
$\mathrm{A} \mathrm{DFA}=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathrm{~F}\right)$

Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).
input tape

Definition: Nondeterministic PDA (NPDA) is defined by

$$
\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{~F}\right)
$$

where
Q is finite set of states
Σ is tape (input) alphabet
Γ is stack alphabet
q_{0} is initial state
z - start stack symbol, (bottom of stack marker), $\mathrm{z} \in \Gamma$
$\mathrm{F} \subseteq \mathrm{Q}$ is set of final states.
$\delta: \mathrm{Q} \times(\Sigma \cup\{\lambda\}) \times \Gamma \rightarrow$ finite subsets of $Q \times \Gamma^{*}$

Example of transitions

$\delta\left(q_{1}, \mathrm{a}, \mathrm{b}\right)=\left\{\left(q_{3}, \mathrm{~b}\right),\left(q_{4}, \mathrm{ab}\right),\left(q_{6}, \lambda\right)\right\}$
Meaning: If in state q_{1} with "a" the current tape symbol and "b" the symbol on top of the stack, then pop "b", and either

```
move to }\mp@subsup{q}{3}{}\mathrm{ and push "b" on stack
move to }\mp@subsup{q}{4}{}\mathrm{ and push "ab" on stack ("a" on top)
move to }\mp@subsup{q}{6}{
```

Transitions can be represented using a transition diagram.
The diagram for the above transitions is:

Each arc is labeled by a triple: $\mathrm{x}, \mathrm{y} ; \mathrm{z}$ where x is the current input symbol, y is the top of stack symbol which is popped from the stack, and z is a string that is pushed onto the stack.

Instantaneous Description:

$$
(\mathrm{q}, \mathrm{w}, \mathrm{u})
$$

Notation to describe the current state of the machine (q), unread portion of the input string (w), and the current contents of the stack (u).

Description of a Move:

$$
\left(q_{1}, \mathrm{aw}, \mathrm{bx}\right) \vdash\left(q_{2}, \mathrm{w}, \mathrm{yx}\right)
$$

iff

Definition Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right)$ be a NPDA. $\mathrm{L}(\mathrm{M})=\left\{\mathrm{w} \in \Sigma^{*} \mid\left(q_{0}, \mathrm{w}, \mathrm{z}\right) \stackrel{*}{\vdash}(\mathrm{p}, \lambda, \mathrm{u}), \mathrm{p} \in \mathrm{F}, \mathrm{u} \in \Gamma^{*}\right\}$. The NPDA accepts all strings that start in q_{0} and end in a final state.

Example: $\mathrm{L}=\left\{a^{n} b^{n} \mid n \geq 0\right\}, \Sigma=\{a, b\}, \Gamma=\{z, a\}$

Another Definition for Language Acceptance

NPDA M accepts $L(M)$ by empty stack:

$$
\mathrm{L}(\mathrm{M})=\left\{w \in \Sigma^{*} \mid\left(q_{0}, w, z\right) \stackrel{*}{\vdash}(p, \lambda, \lambda)\right\}
$$

Example: L $=\left\{a^{n} b^{m} c^{n+m} \mid n, m>0\right\}, \Sigma=\{a, b, c\}, \Gamma=\{0, z\}$

Examples for you to try on your own: (solutions are at the end of the handout).

- $\mathrm{L}=\left\{a^{n} b^{m} \mid m>n, m, n>0\right\}, \Sigma=\{a, b\}, \Gamma=\{z, a\}$
- $\mathrm{L}=\left\{a^{n} b^{n+m} c^{m} \mid n, m>0\right\}, \Sigma=\{a, b, c\}$,
- $\mathrm{L}=\left\{a^{n} b^{2 n} \mid n>0\right\}, \Sigma=\{a, b\}$

Definition: A PDA $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right)$ is deterministic if for every $q \in \mathrm{Q}, a \in \Sigma \cup\{\lambda\}, b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b)=\emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$.
Examples:

1. Previous pda for $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is deterministic?
2. Previous pda for $\left\{a^{n} b^{m} c^{n+m} \mid n, m>0\right\}$ is deterministic?
3. Previous pda for $\left\{w w^{R} \mid w \in \Sigma^{+}\right\}, \Sigma=\{a, b\}$ is deterministic?

Example: L $=\left\{a^{n} b^{m} \mid m>n, m, n>0\right\}, \Sigma=\{a, b\}, \Gamma=\{z, a\}$

Example: $\mathrm{L}=\left\{a^{n} b^{n+m} c^{m} \mid n, m>0\right\}, \Sigma=\{a, b, c\}$,

Example: L $=\left\{a^{n} b^{2 n} \mid n>0\right\}, \Sigma=\{a, b\}$

