Regular Expressions

Method to represent strings in a language

- union (or)
- concatenation (AND) (can omit)
- star-closure (repeat 0 or more times)

Example:

\((a + b)^* \circ a \circ (a + b)^*\)

Example:

\((aa)^*\)

Definition Given \(\Sigma\),

1. \(\emptyset, \lambda, a \in \Sigma\) are R.E.
2. If \(r\) and \(s\) are R.E. then
 - \(r+s\) is R.E.
 - \(rs\) is R.E.
 - \((r)\) is a R.E.
 - \(r^*\) is R.E.
3. \(r\) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) = \) language denoted by R.E. \(r\).

1. \(\emptyset, \{\lambda\}, \{a\}\) are L denoted by a R.E.
2. if \(r\) and \(s\) are R.E. then
 - (a) \(L(r+s) = L(r) \cup L(s)\)
 - (b) \(L(rs) = L(r) \circ L(s)\)
 - (c) \(L((r)) = L(r)\)
 - (d) \(L((r)^*) = (L(r)^*)\)

Precedence Rules

- * highest
- ◦
- +

Example:

\(ab^* + c = \)
Examples:

1. $\Sigma = \{a, b\}$, \{\(w \in \Sigma^* \mid w\) has an odd number of \(a\)'s followed by an even number of \(b\)'s\}.

2. $\Sigma = \{a, b\}$, \{\(w \in \Sigma^* \mid w\) has no more than 3 \(a\)'s and must end in \(ab\)\}.

3. Regular expression for all integers (including negative)

Section 3.2 Equivalence of DFA and R.E.

Theorem Let \(r\) be a R.E. Then \exists NFA M s.t. L(M) = L(r).

• Proof:
 1. \(\emptyset\)
 2. \{\(\lambda\)\}
 3. \{\(a\)\}

Suppose \(r\) and \(s\) are R.E.

1. \(r+s\)
2. \(rs\)
3. \(r^*\)

Example

\(ab^* + c\)

Theorem Let L be regular. Then \exists R.E. r s.t. L=L(r).

Proof Idea: remove states sucessively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

• Proof:
 1. Assume M has one final state and \(q_0 \notin F\)
 2. Convert to a generalized transition graph (GTG), all possible edges are present.
 3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

\[r = (r_{ii}^* r_{ij} r_{jj}^* r_{ji}^* r_{ij} r_{jj}^*)^* r_{ii}^* r_{ij} r_{jj}^* \]

4. If the GTG has three states then it must have the following form:
In this case, make the following replacements:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^{*}r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^{*}r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^{*}r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^{*}r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

r_{op} replaced with $r_{op} + r_{ok}r_{kk}^{*}r_{kp}$

with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:
\[
\begin{align*}
 r + r &= r \\
 s + r^*s &= \\
 r + \emptyset &= \\
 r\emptyset &= \\
 \emptyset^* &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)r^* &= \\
\end{align*}
\]
and similar rules.

Example:

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (q0) at (0,0) {q0};
 \node (q1) at (2,2) {q1};
 \node (q2) at (2,-2) {q2};
 \path[->,thick]
 (q0) edge [loop right] node {a} (q0)
 (q0) edge node {a} (q1)
 (q1) edge node {b} (q2)
 (q2) edge [loop right] node {b} (q2)
 (q2) edge [loop above] node {a} (q2)
 (q1) edge node {a} (q0)
 (q1) edge node {b} (q2)
end{tikzpicture}
\end{figure}

Section 3.3

Grammar \(G = (V, T, S, P) \)

- \(V \) variables (nonterminals)
- \(T \) terminals
- \(S \) start symbol
- \(P \) productions

Right-linear grammar:

all productions of form

\[
A \rightarrow xB \\
A \rightarrow x
\]

where \(A, B \in V \), \(x \in T^* \)

Left-linear grammar:

all productions of form

\[
A \rightarrow Bx \\
A \rightarrow x
\]

where \(A, B \in V \), \(x \in T^* \)

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{ S \}, \{ a, b \}, S, P), \ P = \]
\[S \to abS \]
\[S \to \lambda \]
\[S \to Sab \]

Example 2:

\[G = (\{ S, B \}, \{ a, b \}, S, P), \ P = \]
\[S \to aB \ | \ bS \ | \ \lambda \]
\[B \to aS \ | \ bB \]

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\(\leftarrow \rightarrow \) Given a regular grammar \(G \)
- Construct NFA \(M \)
- Show \(L(G) = L(M) \)

\(\rightarrow \rightarrow \) Given a regular language
- \(\exists \) DFA \(M \) s.t. \(L = L(M) \)
- Construct reg. grammar \(G \)
- Show \(L(G) = L(M) \)

Proof of Theorem:

\(\leftarrow \rightarrow \) Given a regular grammar \(G \)
\(G = (V, T, S, P) \)
\[V = \{ V_0, V_1, \ldots, V_\nu \} \]
\[T = \{ v_0, v_1, \ldots, v_z \} \]
\[S = V_0 \]
Assume \(G \) is right-linear
(see book for left-linear case).
Construct NFA \(M \) s.t. \(L(G) = L(M) \)
If \(w \in L(G), w = v_1 v_2 \ldots v_k \)

\(M = (V \cup \{ V_f \}, T, \delta, V_0, \{ V_f \}) \)
\[V_0 \text{ is the start (initial) state} \]
For each production, \(V_i \to aV_j, \)

\(\rightarrow \rightarrow \) Given a regular language
- \(\exists \) DFA \(M \) s.t. \(L = L(M) \)
- Construct reg. grammar \(G \)
- Show \(L(G) = L(M) \)
For each production, $V_i \rightarrow a$

Show $L(G) = L(M)$
Thus, given R.G. G,
$L(G)$ is regular

(\Rightarrow) Given a regular language L
\exists DFA M s.t. $L = L(M)$
$M = (Q, \Sigma, \delta, q_0, F)$
$Q = \{q_0, q_1, \ldots, q_n\}$
$\Sigma = \{a_1, a_2, \ldots, a_m\}$
Construct R.G. G s.t. $L(G) = L(M)$
$G = (Q, \Sigma, q_0, P)$
if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G) = L(M)$.
QED.

Example

$G = (\{S,B\}, \{a,b\}, S, P), P =$
$S \rightarrow aB \mid bS \mid \lambda$
$B \rightarrow aS \mid bB$

Example:

![Diagram](image-url)