
1

Constraint Satisfaction Problems
CompSci 370

Ron Parr
Department of Computer Science

Duke University

With thanks to Kris Hauser for some slides

Checking for Solution Existence

• In some problems, we don’t care about a path, but
about a configuration that has a desired property

• Instead of a goal, we have a target, which can be a
set of states that satisfy some property

• We call the set of properties that legal solutions
must obey constraints

• We call these problems constraint satisfaction
problems (CSPs)

2

CSP Examples

• Satisfying curriculum/major requirements

• Sudoku

• Seating arrangements at a party

• LSAT Questions:
http://www.thelsattrainer.com/sample-lsat-logic-games.html

CSPs
• Specifying CSPs
• One view: Search with special goal criteria
• CSP definition (general):

– Variables X1,…,Xn

– Variable Xi has domain Di

– Constraints C1,…,Cm

– Solution: Each variable gets a value from its domain
such that no constraints violated

• CSP examples…
– http://www.csplib.org/

3

CSP Example
Graph coloring:

Western
Australia
(WA)

Northern
Territory
(NT)

Queensland (Q)South
Australia
(SA) New South

Whales (NSW)

Victoria (V)Tasmania (T)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color. (3-coloring)

CSP as a Search Problem
• n variables X1, ..., Xn
• Valid assignment: {Xi1 ß vi1, ..., Xik ß vik}, 0£ k £ n,

such that the values vi1, ..., vik satisfy all constraints relating the
variables Xi1, ..., Xik

• Complete assignment: one where k = n
[if all variable domains have size d, there are O(dn) complete
assignments]

• States: valid assignments
• Initial state: empty assignment {}, i.e. k = 0
• Successor of a state:
{Xi1ßvi1, ..., Xikßvik} à {Xi1ßvi1, ..., Xikßvik, Xik+1ßvik+1}
• Goal test: k = n

4

Backtracking Search

• Essentially a simplified depth-first
algorithm using recursion

Backtracking Search
(3 variables)

Assignment = {}

5

Backtracking Search
(3 variables)

Assignment = {(X1,v11)}

X1

v11

Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

6

Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2 Assume that no value of X2
leads to a valid assignment

Then, the search algorithm
backtracks to the previous variable
(X3) and tries another value

Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32v31

X2

7

Backtracking Search
(3 variables)

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2
Assume again that no value of
X2 leads to a valid assignment

The search algorithm
backtracks to the previous
variable (X3) and tries another
value. But assume that X3 has
only two possible values. The
algorithm backtracks to X1

v31

X2

Backtracking Search
(3 variables)

Assignment = {(X1,v12)}

X1

v11

X3

v32

X2

v31

X2

v12

8

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other

9

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3
The algorithm need
not consider the values
of X3 in the same order
in this sub-tree

10

Backtracking Search
(3 variables)

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3
Since there are only
three variables, the
assignment is complete

Backtracking Algorithm

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do

a. Add (Xßv) to A
b. If A is valid then

i. result ß CSP-BACKTRACKING(A)
ii. If result ¹ failure then return result

c. Remove (Xßv) from A
5. Return failure

11

Efficiency of CSP-Backtracking

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do

a. Add (Xßv) to A
b. If a is valid then

i. result ß CSP-BACKTRACKING(A)
ii. If result ¹ failure then return result

c. Remove (Xßv) from A
5. Return failure

Practical Efficiency
of CSP Algorithms

• Fundamental trade off
– Time spent ruling out bad/impossible choices
– Time spent searching

• Try to find the sweet spot where you quickly
rule out bad/unpromising choices

• Compare with sweet spot for heuristics in A*

12

CSP Example Revisited
Graph coloring:

Western
Australia
(WA)

Northern
Territory
(NT)

Queensland (Q)South
Australia
(SA) New South

Whales (NSW)

Victoria (V)Tasmania (T)

Problem: Assign Red, Green and Blue so that no 2 adjacent
regions have the same color. (3-coloring)

Example Contd.

• Variables: {WA, NT, Q, SA, NSW, V, T}
• Domains: {R,G,B}
• Constraints:

For WA – NT:{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)}

• We have a table for each adjacent pair

• Note: Many possible ways to express constraints

13

Forward Checking

• Idea: Assignments to variables immediately rule
out certain assignments to other variables

• Remove illegal/invalid options from the domains
other variables

• You probably do this when you play Sudoku!

By Tim Stellmach, CC0, https://commons.wikimedia.org/w/index.php?curid=57831926

Forward Checking in Map
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW
V

Constraint graph

14

Forward Checking in Map
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R RGB RGB RGB RGB RGB RGB

T
WA

NT

SA

Q

NSW
V

Forward checking removes the value Red of NT and of SA

Forward Checking in Map
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R GB G RGB RGB GB RGB

T
WA

NT

SA

Q

NSW
V

15

Forward Checking in Map
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

T
WA

NT

SA

Q

NSW
V

Forward Checking in Map
Coloring

WA NT Q NSW V SA T
RGB RGB RGB RGB RGB RGB RGB
R GB RGB RGB RGB GB RGB
R B G RB RGB B RGB
R B G RB B B RGB

Empty set: the current assignment
{(WA ß R), (Q ß G), (V ß B)}

does not lead to a solution

16

Forward Checking (General Form)
Whenever a pair (Xßv) is added to assignment A do:

For each variable Y not in A do:
For every constraint C relating Y to
the variables in A do:

Remove all values from Y’s domain
that do not satisfy C

Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i) result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure

17

Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i) result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure

No need any more to
verify that A is valid

Need to pass down the
updated variable domains

Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i) result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure

18

Modified Backtracking Algorithm
CSP-BACKTRACKING(A, var-domains)

1. If assignment A is complete then return A
2. X ß select a variable not in A
3. D ß select an ordering on the domain of X
4. For each value v in D do

a. Add (Xßv) to A
b. var-domains ß forward checking(var-domains, X, v, A)
c. If no variable has an empty domain then

(i) result ß CSP-BACKTRACKING(A, var-domains)
(ii) If result ¹ failure then return result

d. Remove (Xßv) from A
5. Return failure

1) Which variable Xi should be assigned a value next?
à Most-constrained-variable heuristic
à Most-constraining-variable heuristic

2) In which order should its values be assigned?
à Least-constraining-value heuristic

NOTE: Different use of the word “heuristic” from A*
Don’t confuse these two! You will only get questions
about heuristics as functions from states to reals!

19

Most-Constrained-Variable Heuristic
1) Which variable Xi should be assigned a value next?

Select the variable with the smallest
remaining domain

[Rationale: Minimize the branching factor]

Map Coloring

§ SA’s remaining domain has size 1 (value B remaining)
§ Q’s remaining domain has size 2
§ NSW’s, V’s, and T’s remaining domains have size 3

à Select SA

WA

NT

SA

Q

NSW
V

T

WA

NT

SA

20

Most-Constraining-Variable Heuristic
1) Which variable Xi should be assigned a value next?

Among the variables with the smallest
remaining domains (ties with respect to the
most-constrained-variable heuristic), select the
one that appears in the largest number of
constraints on variables not in the current
assignment
[Rationale: Increase future elimination of values, to
reduce future branching factors]

Map Coloring

§ Before any value has been assigned, all variables
have a domain of size 3, but SA is involved in more
constraints (5) than any other variable

à Select SA and assign a value to it (e.g., Blue)

WA

NT

SA

Q

NSW
V

T

SA

21

Least-Constraining-Value Heuristic

2) In which order should X’s values be assigned?

Select the value of X that removes the
smallest number of values from the domains
of those variables which are not in the current
assignment

[Rationale: Since only one value will eventually be
assigned to X, pick the least-constraining value first,
since it is the most likely not to lead to an invalid
assignment]

[Note: Using this heuristic requires performing a forward-
checking step for every value, not just for the selected value]

Map Coloring

§ Q’s domain has two remaining values: Blue and Red
§ Assigning Blue to Q would leave 0 value for SA, while

assigning Red would leave 1 value

{}

WA

NT

SA

Q

NSW
V

T

WA

NT

22

Map Coloring

§ Q’s domain has two remaining values: Blue and Red
§ Assigning Blue to Q would leave 0 value for SA, while

assigning Red would leave 1 value
à So, assign Red to Q

{Blue}

WA

NT

SA

Q

NSW
V

T

WA

NT

More Advanced Constraint Propagation

• Forward checking can’t discover all possible consequences
that could lead to failure

• (Doing this in general would require solving the entire
problem, so we shouldn’t expect a free lunch here.)

• AC3 (see textbook) is an advanced algorithm that is a good
trade off between efficiency and effectiveness

• But how hard are CSPs, really?

23

Digression: NP-Hardness
• NP hardness is not an AI topic
• You will not be tested on it explicitly, but

• It’s important for all computer scientists
• Understanding it will deepen your understanding of AI (and

other CS) topics
• You will be expected to understand its relevance and use

for AI problems

• Eat your vegetables; they’re good for you

P and NP
• P and NP are about decision problems
• P is set of problems that can be solved in polynomial time
• NP is a superset of P
• NP is the set of problems that:

– Have solutions which can be verified in polynomial time or,
equivalently,

– can be solved by a non-deterministic Turing machine in
polynomial time (OK if you don’t know what that means yet)

• Roughly speaking:
– Problems in P are tractable – can be solved in a reasonable

amount of time, and Moore’s law helps
– Some problems in NP might not be tractable

24

Scaling

Isn’t P big?

• P includes O(n), O(n2), O(n10), O(n100), etc.
• Clearly O(n10) isn’t something to be excited about

– not practical

• Computer scientists are very clever at making
things that are in P efficient

• First algorithms for some problems are often
quite expensive, e.g., O(n3), but research often
brings this down

25

Understanding the class NP

• A class of decision problems (Yes/No)
• Solutions can be verified in polynomial time
• Examples:
– Graph coloring:

– Sortedness: [1 2 3 4 5 8 7]

WA
NT

Q

SA
NSW

VT

NP-hardness
• Many problems in AI are NP-hard (or worse)
• What does this mean?
• NP-hard = as hard as hardest problems in NP
• Identifying a problem as NP hard means:
– You probably shouldn’t waste time trying to find a

polynomial time solution
– If you find a polynomial time solution, either
• You have a bug
• Find a place on your shelf for your Turing award

• NP hardness is a major triumph (and failure) for
computer science theory

26

NP-hardness

• Why it is a failure:
– There is a huge class of problems with no known

efficient solutions
– We have failed, as a community, to either find

efficient solutions or prove that none exist

• Why it is a triumph:
– We have a developed a precise language for talking

about these problems
– We have developed sophisticated ways to reason

about and categorize the problems we don’t know
how to solve efficiently

P=NP?

• Biggest open question in CS

• Can NP-hard problems be solved in poly time?
• Probably not, but nobody has been able to prove it yet

• Many false starts, e.g.:
http://www.nytimes.com/2009/10/08/science/Wpolynom.html

27

How challenging is “P=NP?”

• Princeton University CS department
• See: http://www.cs.princeton.edu/general/bricks.php
• Photo from: http://stuckinthebubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

Hardness of CSPs

• CSPs are known to be NP-hard
(for most reasonable formulations of the problem)

• Bad news: Don’t bother trying to find a general,
efficient way to solve CSPs

• Good news: Many problems can be solved much faster
than the worst (exponential) case in practice

• So-so news: Sometimes you just need to run a solver
and see what happens
– You might get an answer quickly
– You might just wait, and wait, and wait…

http://www.cs.princeton.edu/general/bricks.php

28

CSP Conclusions

• CSPs are a general language for describe a large
family of problems

• Might require exponential time (worst case)

• Advanced algorithms exist that try to discover
bad choices quickly, reducing the search space
– Microsoft Solver Foundation
– CPLEX

