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Why Study Games?

• Many human activities can be modeled as games
– Negotiations
– Bidding
– TCP/IP
– Military confrontations
– Pursuit/Evasion

• Games are used to train the mind
– Human game-playing, animal play-fighting
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Why Are Games Good for AI?

• Games typically have concise rules
• Well-defined starting and end points
• Sensing and effecting are simplified

– Not true for sports games
– See robocup

• Games are fun!
• Downside:  Getting taken seriously (not)

– See robo search and rescue
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Some History of Games in AI

• Computer games have been around almost as long as 
computers (perhaps longer)
– Chess:  Turing (and others) in the 1950s
– Checkers:  Samuel, 1950s learning program

• Usually start with naïve optimism
• Follow with naïve pessimism
• Simon:  Predicted computer chess champ by 1967
• Many, e.g., Kasparov, predicted that a computer would 

never be champion
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Checkers: Tinsley vs. Chinook
Name: Marion Tinsley
Profession: Taught mathematics
Hobby: Checkers
Record: Over 42 years 

loses only 3 games 
of checkers

World champion for over 40  years

Mr. Tinsley suffered his 4th and 5th losses against Chinook (1994)
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Chinook

• First computer to become official world 
champion of Checkers!
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Chess: Kasparov vs. Deep Blue

Kasparov

5’10” 
176 lbs 
34 years
50 billion neurons

2 pos/sec
Extensive
Electrical/chemical
Enormous

Height
Weight

Age
Computers

Speed
Knowledge

Power Source
Ego

Deep Blue

6’ 5”
2,400 lbs

4 years
32 RISC processors 

+ 256 VLSI chess engines
200,000,000 pos/sec

Primitive
Electrical

None

Jonathan Schaeffer

1997: Deep Blue wins by 3 wins, 1 loss, and 2 draws
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Chess: Kasparov vs. Deep Junior

August 2, 2003: Match ends in a 3/3 tie!

Deep Junior

8 CPU, 8 GB RAM, Win 2000 
2,000,000 pos/sec

Available at ~$1000

(Note: Lesser hardware, but 
more clever software)
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Othello: Murakami vs. Logistello

Takeshi Murakami
World Othello Champion

1997: The Logistello software crushed Murakami 
by 6 games to 0
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AlphaGo

• Go believed to be qualitatively different from other games due to enormous 
branching factor – brute force can’t search very deep

• Played best living human go player, Lee Sedol, (possibly one of the strongest go 
players ever) in March 2016, winning 4/5 games

• Used between 1K and 2K CPUs, 150-300 GPUs

• Play was described as surprising and original; Made moves that were 
unexpected at first, but made sense in hindsight

• Played the 2017 best go player (Ke Jie) in May 2017, winning 3/3

• AlphaGo Zero learns entirely from self-play, stronger, less computation
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“Solved” Games

• A game is solved if an optimal strategy is known
• Strongly solved = solved for all positions (tic tac toe)
• Weakly solved = solved for some (e.g. starting) 

positions (checkers)

• Why bother playing solved games?

Source: Wikipedia
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Simple Game Setup
• Most commonly, we study games that are:

– 2 player
– Alternating
– Zero-sum
– Perfect information

• Examples:  Checkers, chess, backgammon
• Assumptions can be relaxed at some expense
• Economics studies case where #of agents is very large

– Individual actions don’t change the dynamics
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Zero Sum Games

• Assign values to different outcomes
• Win = 1, Loss = -1
• With zero sum games every gain comes at the 

other player’s expense
• Sum of both player’s scores must be 0
• Are any games truly zero sum?
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Characterizing Games

• Two-player alternating move games are very 
much like search
– Initial state
– Successor function
– Terminal test
– Objective function (heuristic function)

• Unlike search
– Terminal states are often a large set
– Full search to terminal states usually impossible

15



8

Game Trees
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Game Trees (abstracted)

Max nodes

Min nodes

Terminal Nodes
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Minimax

• Max player tries to maximize his return
• Min player tries to minimize max’s return
• This is optimal for both (assuming zero sum)

!!!!

€ 

minimax(nmax ) =maxs∈succesors(n)minimax(s)

!!!!

€ 

minimax(nmin ) =mins∈succesors(n)minimax(s)

Note: Trivial to implement as two mutually recursive functions
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Minimax Values

Max nodes

Min nodes

3 12 2 4 15 2

3 2 2

3
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Minimax Properties

• Minimax can be run depth first
– Time O(bm)
– Space O(bm)

• Assumes that opponent plays optimally

• Based on a worst-case analysis

• What if this is incorrect?
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Minimax in the Real World

• Search trees are too big
• Alternating turns double depth of the search

– 2 ply = 1 full turn
• Branching factors are too high

– Chess: ~35 (per turn)
– Go:  ~361 (per turn)

• Full search from start to end never terminates in 
non-trivial games
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Real-Time decisions
• The state space is enormous: only a tiny fraction of this space 

can be explored within the time limit (e.g. 3min for chess)

1. Using the current state as the initial state, build the game tree 
uniformly to the maximal depth h (called horizon) feasible 
within the time limit

2. Evaluate the states of the leaf nodes
3. Back up the results from the leaves to the root and pick the 

best action assuming the worst from MIN
4. Repeat
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Evaluation Function

• Function e: state s ® number e(s)
• e(s) is a heuristic that estimates how 

favorable s is for MAX
• e(s) > 0 means that s is favorable to MAX 

(the larger the better)
• e(s) < 0 means that s is favorable to MIN 
• e(s) = 0 means that s is neutral 
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Example: Tic-tac-Toe
e(s) = number of rows, columns, 

and diagonals open for MAX 
- number of rows, columns, 
and diagonals open for MIN 

8-8 = 0 6-4 = 2 3-3 = 0
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Construction of an 
Evaluation Function

• Usually a weighted sum of “features”:

• Features may include
– Number of pieces of each type
– Number of possible moves
– Number of squares controlled 
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Backing up Values

6-5=1

5-6=-15-5=0

5-5=0 6-5=1 5-5=1 4-5=-1

5-6=-1

6-4=25-4=1

6-6=0 4-6=-2

-1

-2

1

1Tic-Tac-Toe tree
at horizon = 2 Best move
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Continuation

0

1

1

1 32 11 2

1

0

1 1 0

0 2 01 1 1

2 22 3 1 2
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Why use backed-up values?

• If e is to be trusted in the first place, then 
the backed-up value is a better estimate of 
how favorable STATE(N) is than 
e(STATE(N)) 

• Why? Presumption that e() is more 
accurate closer to the end of the game
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Search Control Issues

• Horizon effects
– Something interesting is just beyond the horizon?
– How do you know?

• When to generate more nodes?
• If you selectively extend your frontier, where?
• How do you allocate a fixed amount of game time?

• Many extensions to minimax to address this, but most 
important improvement is alpha-beta pruning
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Pruning

• The most important search control method is 
figuring out which nodes you don’t need to expand

• Use the fact that we are doing a worst-case 
analysis to our advantage
– Cut off search at min nodes when max can already 

force a better outcome (for max) 
– Cut off search at max nodes when max can already 

force a better outcome (for min)
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Alpha-beta pruning

Max nodes

Min nodes

3 12 2 4 15 2

3 2 2

3
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How to prune
• We still do (bounded) DFS
• Expand at least one path to the “bottom”

• If current node is max node, and min can force a 
lower value, then prune siblings

• If current node is min node, and max can force a 
higher value, then prune siblings

34

Max node pruning

2 4

2

4

Max nodes
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Implementing alpha-beta
max_value(state, alpha, beta)
if cutoff(state) then return eval(state)
v = -∞
for each s in successors(state) do
v = max(v, min_value(s, alpha, beta))
if v ≥ beta then return v
alpha = max(alpha,v)

end
return v

min_value(state, alpha, beta)
if cutoff(state) then return eval(state)
v = ∞
for each s in successors(state) do
v = min(v, max_value(s, alpha, beta))
if v ≤ alpha then return v
beta = min(beta,v)

end
return v

alpha=value of best 
guaranteed option 
available to max

beta=value of best
guaranteed option
available to min

Call:
max_value(root, -∞, + ∞)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3 (3, + ∞)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3 (3, + ∞)

(3, + ∞)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3 (3, + ∞)

(3, + ∞)

2

2

(3, 15)
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3 (3, + ∞)
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2

2

(3, + ∞)
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Alpha-beta in action
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Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3 (3, + ∞)

(3, + ∞)

2

2

(3, + ∞)

(3, + ∞)

15

49



24

Alpha-beta in action

3 12 2 4 15 2

(-∞, + ∞)

(-∞, + ∞)

(-∞, + ∞)

3
(-∞, 3)

12

3 (3, + ∞)

(3, + ∞)

2

2

(3, + ∞)

(3, + ∞)

15
(3, 15)

50

Alpha-beta in action
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Alpha-beta in action
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A Larger Example
(w/o Alpha-Beta values)
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

MAX

MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

MAX

MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0
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MIN
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MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

MAX

MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

MAX

MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3
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MAX

MIN

MAX
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

MAX

MIN

MAX

MIN

MAX

MIN

60

Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

MAX

MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0
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0 -3 3

3

0
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MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

-3 3

3

0

5

MAX

MIN

MAX

MIN

MAX

MIN
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

MAX

MIN

MAX

MIN

MAX

MIN

67



33

Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0MAX

MIN

MAX

MIN

MAX

MIN

75



37

Example
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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Example

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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How much do we gain?

• Consider these two cases:

3

a = 3

-1

b=-1

(4)

3

a = 3

4

b=4

-1
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How much do we gain?

• Assume a game tree of uniform branching factor b
• Minimax examines O(bh) nodes = worst case for alpha-beta
• The gain for alpha-beta is maximum when:

– The children of a MAX node are ordered in decreasing backed up values
– The children of a MIN node are ordered in increasing backed up values

• Then alpha-beta examines O(bh/2) nodes [Knuth and Moore, 1975]

• But this requires an oracle (if we knew how to order nodes 
perfectly, we would not need to search the game tree)

• If nodes are ordered at random, then the average number of 
nodes examined by alpha-beta is ~O(b3h/4)
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MAX

CHANCE

MIN

CHANCE

MAX

What About Probabilities?
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Expectiminimax

• n random outcomes per chance node
• O(bmnm) time

!!!!

€ 

eminimax(nmax ) =maxs∈succesors(n)eminimax(s)

!!!!

€ 

eminimax(nmin ) =mins∈succesors(n)eminimax(s)

!!!!

€ 

eminimax(nchance ) = eminimax(s)
s∈succesors(n)

∑ p(s)
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Expectiminimax is nasty

• High branching factor

• Randomness makes evaluation fns difficult
– Hard to predict many steps into future
– Values tend to smear together
– Preserving order is not sufficient

• Pruning chance nodes is problematic
– Need to prune based upon bound on an expectation
– Need a priori bounds on the evaluation function
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Dealing with High Branching Factors

• High branching = shallower search cutoff
• Shallower search cutoff = greater dependence on e()
• But… Coming up with good e() is hard!

• Solution: Use reinforcement learning 
• Backgammon (TD-gammon)

– Go (AlphaGo)

Source: Wikipedia
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Learning e()

• Recall:
– If e is to be trusted in the first place, then the 

backed-up value is a better estimate of how 
favorable STATE(N) is than e(STATE(N)) 

– Why? Presumption that e() is more accurate closer 
to the end of the game

• Idea: 
– Why not propagate our experience to tune e()?
– Reinforcement learning can do this!
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Multiplayer (>2 player) Games

• Things sort-of generalize, but can get complicated

• Vector of possible values for each player at each node

• What’s wrong with assuming all players act selfishly? 
(Note: In pacman, we assume all ghosts are conspiring 
against you, which really makes them one big agent.)

• Correct treatment requires machinery of game theory 
(later in the course)
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Major Take Home Points

• Game tree search is a special kind of search

• Alpha-beta is a big win

• Most successful players use alpha-beta

• Good evaluation functions critical to 
performance in depth limited search
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