CompSci 270 Informed Search

Ron Parr Department of Computer Science Duke University

Thanks to Kris Hauser for many slides

A* is complete and optimal

[This result holds if nodes revisiting states are not discarded – otherwise you might find a shortcut and then discard it.]

E	xperiment (see R&N fo	r details)	ts
• 8-puzzle	with:		
$-h_1 = nu$	mber of misplaced tile	s	
$-h_2 = su$	n of distances of tiles t	o their goal position	ons
Random	generation of many	y problem insta	nces
 Average e 	effective branching	factors (numbe	er of
expanded d	l nodes):	A ₁ *	A ₂ *
expanded d 2	IDDFS	A ₁ * 1.79	A ₂ * 1.79
expanded d 2 6	I nodes): IDDFS 2.45 2.73	A ₁ * 1.79 1.34	A ₂ * 1.79 1.30
expanded d 2 6 12	I nodes): IDDFS 2.45 2.73 2.78 (3,644,035)	A ₁ * 1.79 1.34 1.42 (227)	A ₂ * 1.79 1.30 1.24 (73)
expanded 2 6 12 16	IDDFS 2.45 2.73 2.78 (3,644,035) 	A ₁ * 1.79 1.34 1.42 (227) 1.45	A ₂ * 1.79 1.30 1.24 (73) 1.25
expanded 2 6 12 16 20	I nodes): IDDFS 2.45 2.73 2.78 (3,644,035) 	A ₁ * 1.79 1.34 1.42 (227) 1.45 1.47	A ₂ * 1.79 1.30 1.24 (73) 1.25 1.27

Memory-bounded Search: Why?

- We run out of memory before we run out of time
- Problem: Need to remember entire search horizon
- Solution: Remember only a partial search horizon
- Issue: Maintaining optimality, completeness
- Issue: How to minimize time penalty
- Details: Not emphasized in class, but worth a skim so that you are aware of the issues

(leaf) nodes

