CompSci 270 Informed Search

Ron Parr
Department of Computer Science
Duke University

Example

For an uninformed strategy, N_{1} and N_{2} are just two nodes (at some position in the search tree)

Example

For a heuristic strategy counting the number of misplaced tiles, N_{2} is more promising than N_{1}

1	2	3	
4	5	6	
7	8		
Goal state			

Heuristic Function

- The heuristic function $h(N) \geq 0$ estimates the cost to go from STATE(N) to a goal state

Value is independent of the current search tree; it depends only on STATE(N) and the goal test GOAL

- Example:

STATE(N)

Goal state

- $\mathrm{h}(\mathrm{N})=$ number of misplaced numbered tiles $=6$
- [Why is it an estimate of the distance to the goal?]

Informed/Heuristic Search

- Idea: Give the search algorithm hints
- Heuristic function: $h(x)$
- $h(x)=$ estimate of cost to goal from x
- If $h(x)$ is 100% accurate, then we can find the goal in $O(b d)$ time
- How do we use this?

Greedy Best First Search

- Expand node with lowest $h(x)$
- (Implement priority queue on h)
- Optimal if $h(x)$ is 100% correct
- How can we get into trouble with this?

What's broken with greedy search?

$$
f(N)=h(N)=\text { straight distance to the goal }
$$

$$
A^{*}
$$

- Path cost so far: $\mathrm{g}(\mathrm{x})$
- Total cost estimate: $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x})$
- Maintain frontier as a priority queue (on f)
- $O(b d)$ time if h is 100% accurate
- We want h to be an admissible heuristic
- Admissible: never overestimates cost
- Why admissible?
(guarantees optimality, completeness of A*!)

8-Puzzle Heuristics

5		8
4	2	1
7	3	6
STATE(N)		

1	2	3
4	5	6
7	8	
Goal state		

- $h_{1}(N)=$ number of misplaced tiles $=6$ is ???

Robot Navigation Heuristics

Cost of one horizontal/vertical step =1
Cost of one diagonal step $=\sqrt{2}$
$h_{1}(N)=\sqrt{\left(x_{N}-x_{g}\right)^{2}+\left(y_{N}-y_{g}\right)^{2}}$

Robot Navigation Heuristics

Cost of one horizontal/vertical step =1
Cost of one diagonal step $=\sqrt{2}$
$h_{2}(N)=\left|x_{N}-x_{g}\right|+\left|y_{N}-y_{g}\right|$ is ???

Robot Navigation

Robot Navigation

$f(N)=h(N)$, with $h(N)=$ Manhattan distance to the goal (greedy, not A*)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Robot Navigation

$f(N)=h(N)$, with $h(N)=$ Manhattan distance to the goal (greedy, not A*)

8	7	6	5	4	3	2	3	4	5	6
7		5	4	3						5
6			3	2	1	0	1	2		4
7	6									5
8	7	6	5	4	3	2	3	4	5	6

Robot Navigation

$f(N)=g(N)+h(N)$, with $h(N)=$ Manhattan distance to goal (A*)

$8+3$	$7+4$	$6+3$	$5+6$	$4+7$	$3+8$	$2+9$	$3+10$	4	5	6
$7+2$		$5+6$	$4+7$	$3+8$						5
$6+1$			3	$2+9$	$1+10$	$0+11$	1	2		4
$7+0$	$6+1$									5
$8+1$	$7+2$	$6+3$	$5+4$	$4+5$	$3+6$	$2+7$	$3+8$	4	5	6

Some A* Properties

- Admissibility implies $h(x)=0$ if x is a goal state
- Above implies $f(x)=$ cost to goal if x is a goal state and x is popped off the queue
- What if $h(x)=0$ for all x ?
- Is this admissible?
- What does the algorithm do?

Result \#1

A* is complete and optimal
[This result holds if nodes revisiting states are not discarded - otherwise you might find a shortcut and then discard it.]

Proof (1/2)

- If a solution exists, A^{*} terminates and returns a solution
- For each node N on the frontier, $f(N)=g(N)+h(N) \geq g(N) \geq d(N) \times \epsilon$, where $d(N)$ is the depth of N in the tree

Proof (1/2)

- If a solution exists, A^{*} terminates and returns a solution
- For each node N on the frontier, $f(N)=g(N)+h(N) \geq g(N) \geq d(N) \times \epsilon$, where $d(N)$ is the depth of N in the tree
-As long as A* hasn't terminated, a node K on the frontier lies on a solution path

Proof (1/2)

- If a solution exists, A^{*} terminates and returns a solution

- For each node N on the frontier, $f(N)=g(N)+h(N) \geq g(N) \geq d(N) \times \epsilon$, where $d(N)$ is the depth of N in the tree -As long as A* hasn't terminated, a node K on the frontier lies on a solution path
- Since each node expansion increases the length of one path, K will eventually be selected for expansion, unless a solution is found along another path

Proof (2/2)

- Whenever A* pops a goal node, the path to this node is optimal
- C* cost of the optimal solution path
- G^{\prime} : non-optimal goal node in the frontier

$$
\mathrm{f}\left(\mathrm{G}^{\prime}\right)=\mathrm{g}\left(\mathrm{G}^{\prime}\right)+\mathrm{h}\left(\mathrm{G}^{\prime}\right)=\mathrm{c}\left(\mathrm{G}^{\prime}\right)>\mathrm{C}^{*}
$$

- A node K in the frontier lies on an optimal path:

$$
f(K)=g(K)+h(K) \leq C^{*}
$$

- So, G' will not be selected for expansion

What to do with revisited states?

The heuristic h is clearly admissible

What to do with revisited states?

If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution

- Not harmful to discard a node revisiting a state
if cost of the new path state is \geq cost of previous path [so, in particular, one can discard a node if it re-visits a state already visited by one of its ancestors - compare w/DFS]
- If A* pushes revisited states, it remains optimal, but states may be re-visited multiple times
[the size of the search tree can be exponential in number of visited states]
- Fortunately, for a large family of admissible heuristics consistent heuristics - there is a much more efficient way to handle revisited states

Consistent Heuristic

- An admissible heuristic h is consistent (or monotone) if for each node N and each child N^{\prime} of $N: h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$

\rightarrow Intuition: a consistent heuristics becomes more precise as we get deeper in the search tree

Consistency Violation

If h tells us that N is 100 units from the goal, then moving from N along an arc costing 10 units should not lead to a node N' that h estimates to be 10 units away from the goal

Consistent Heuristic (alternative definition)

- A heuristic h is consistent (or monotone) if

1. for each node N and each child N^{\prime} of N :
$h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$
2. for each goal node G :

$$
h(G)=0
$$

Admissibility and Consistency

- Any consistent heuristic is also admissible
- An admissible heuristic may not be consistent, but many admissible heuristics are

Reasoning About Consistency

- Example: Manhattan Distance in 8-puzzle
- MD(N,G) <= MD(N,N')+MD(N', $\left.{ }^{\prime}\right)$
$-h(N)=M D(N, G)$
$-h\left(N^{\prime}\right)=M D\left(N^{\prime}, G\right)$
- $h(N)<=M D\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$
- C(N,N') >= MD(N,N')
$-\mathrm{h}(\mathrm{N})<=\mathrm{C}\left(\mathrm{N}, \mathrm{N}^{\prime}\right)+\mathrm{h}\left(\mathrm{N}^{\prime}\right)$
- Note: Not just showing that h obeys triangle inequality between pairs of states

Robot Navigation

$h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$

Cost of one horizontal/vertical step =1 Cost of one diagonal step $=\sqrt{2}$
$h_{2}(N)=\left|x_{N}-x_{g}\right|+\left|y_{N}-y_{g}\right|$ is consistent if moving along diagonals is not allowed, and not consistent otherwise

Result \#2

- If h is consistent, then whenever A^{*} expands a node, it has already found an optimal path to this node's state

Proof (1/2)

1. Consider a node N and its child N^{\prime} Since h is consistent: $h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$
$f(N)=g(N)+h(N) \leq g(N)+c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)=f\left(N^{\prime}\right)$
So, f is non-decreasing along any path

Proof (2/2)

2. If a node K is selected for expansion, then any other node N in the frontier has $f(N) \geq f(K)$

- If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K :
$f\left(N^{\prime}\right) \geq f(N) \geq f(K)$ and $h\left(N^{\prime}\right)=h(K)$ So, $\mathrm{g}\left(\mathrm{N}^{\prime}\right) \geq \mathrm{g}(\mathrm{K})$

Result \#2

If h is consistent, then whenever A^{*} expands a node, it has already found an optimal path to this node's state

- If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K : $f\left(N^{\prime}\right) \geq f(N) \geq f(K)$ and $h\left(N^{\prime}\right)=h(K)$ So, $g\left(N^{\prime}\right) \geq g(K)$

Implication of Result \#2

The path to N is the optimal path to S

Revisited States with Consistent Heuristic (Modified Search Algorithm \#3)

- When a node is expanded, store its state into VISITED
- When a new node N^{\prime} is generated:
- If STATE(N^{\prime}) is in VISITED, discard N'
- If there exists a node $N^{\prime \prime}$ in the frontier such that $\operatorname{STATE}\left(\mathrm{N}^{\prime \prime}\right)=\operatorname{STATE}\left(\mathrm{N}^{\prime}\right)$, discard the node $-\mathrm{N}^{\prime}$ or $\mathrm{N}^{\prime \prime}$ - with the largest f (or, equivalently, g)

Not as important - can safely ignore these checks and just push onto the queue - Why?

Heuristic Accuracy

- Let h_{1} and h_{2} be two consistent heuristics such that for all nodes N :

$$
h_{1}(N) \leq h_{2}(N)
$$

- h_{2} is said to be more accurate (or more informed) than h_{1}

5		8	1	2	3
4	2	1	4	5	6
7	3	6	7	8	
STATE(N)			Goal state		

- $h_{1}(N)=$ number of misplaced tiles
- $h_{2}(N)=$ sum of distances of every tile to its goal position
- h_{2} is more accurate than h_{1}

Result \#3

- Let h_{2} be more accurate than h_{1}
- Let $A_{1}{ }^{*}$ be A^{*} using h_{1} and $A_{2}{ }^{*}$ be A^{*} using h_{2}
- Whenever a solution exists, all the nodes expanded by $\mathrm{A}_{2}{ }^{*}$, except possibly for some nodes such that

$$
f_{1}(N)=f_{2}(N)=C^{*} \text { (cost of optimal solution) }
$$ are also expanded by $\mathrm{A}_{1}{ }^{*}$

Proof

- $\mathrm{C}^{*}=$ cost of optimal solution
- Every node N such that $f(N)<C^{*}$ is eventually expanded. No node N such that $f(N)>C^{*}$ is ever expanded
- Every node N such that $h(N)<C^{*}-g(N)$ is eventually expanded. So, every node N such that $h_{2}(N)<C^{*}-g(N)$ is expanded by $A_{2}{ }^{*}$. Since $h_{1}(N) \leq h_{2}(N), N$ is also expanded by $\mathrm{A}_{1}{ }^{*}$
- If there are several nodes N such that $f_{1}(N)=f_{2}(N)=C^{*}$ (such nodes include the optimal goal nodes, if there exists a solution), $\mathrm{A}_{1}{ }^{*}$ and $\mathrm{A}_{2}{ }^{*}$ may or may not expand them in the same order (until one goal node is expanded)

How to create good heuristics?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position (h_{2}) corresponds to solving 8 simple problems:

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}} \text { is the length of the } \\
& \text { shortest path to move } \\
& \text { tile i to its goal position, } \\
& \text { ignoring the other tiles, } \\
& \text { e.g., } d_{5}=2 \\
& \qquad h_{2}(N)=\sum_{i=1}^{8} d_{i}(N)
\end{aligned}
$$

- It ignores negative interactions among tiles

Can we do better?

- For example, we could consider two more complex relaxed problems:
$d_{1234}=$ length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles

- $\rightarrow \mathrm{h}=\mathrm{d}_{1234}+\mathrm{d}_{5678}$ [disjoint pattern heuristic]
- How to compute d_{1234} and d_{5678} ?

Can we do better?

- For example, we could consider two more complex relaxed problems:
\(\left.\begin{array}{l|l|l|l|}\hline d_{1234}=length of the

\hline 5 \& \& 8

\hline \&

\hline\end{array}\right)\)| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 1 | c | c |

tiles: \rightarrow Several order-of-magnitude speedups
their for the 15- and 24-puzzle (see R\&N)

- $\rightarrow \mathrm{h}=\mathrm{d}_{1234}+\mathrm{d}_{5678}$ [disjoint pattern heuristic]
- These distances are pre-computed and stored [Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

Effective Branching Factor

- Used as measure the effectiveness of h
- Let n be the total number of nodes expanded by A* for a particular problem and d the depth of the solution
- The effective branching factor b^{*} is defined by fitting: $n=1+b^{*}+\left(b^{*}\right)^{2}+\ldots+\left(b^{*}\right)^{d}$

Experimental Results

(see R\&N for details)

- 8-puzzle with:
- $\mathrm{h}_{1}=$ number of misplaced tiles
- $h_{2}=$ sum of distances of tiles to their goal positions
- Random generation of many problem instances
- Average effective branching factors (number of expanded nodes):

d	IDDFS	$\mathrm{A}_{1}{ }^{*}$	$\mathrm{~A}_{2}{ }^{*}$
2	2.45	1.79	1.79
6	2.73	1.34	1.30
12	$2.78(3,644,035)$	$1.42(227)$	$1.24(73)$
16	--	1.45	1.25
20	--	1.47	1.27
24	--	$1.48(39,135)$	$1.26(1,641)$

Memory-bounded Search: Why?

- We run out of memory before we run out of time
- Problem: Need to remember entire search horizon
- Solution: Remember only a partial search horizon
- Issue: Maintaining optimality, completeness
- Issue: How to minimize time penalty
- Details: Not emphasized in class, but worth a skim so that you are aware of the issues

Iterative Deepening A* (IDA*)

- Idea: Reduce memory requirement of A^{*} by applying cutoff on values of f
- Consistent heuristic function h
- Algorithm IDA*:
- Initialize cutoff to f(initial-node)
- Repeat:
- Perform cost-limited search by expanding all nodes N such that $f(N) \leq$ cutoff
- Reset cutoff to smallest value f of non-expanded (leaf) nodes

Advantages/Drawbacks of IDA*

- Advantages:
- Still complete and optimal
- Requires less memory than A*
- Avoids the overhead to sort the frontier (priority queue)
- Drawbacks:
- Discards a lot of information when it restarts
- Available memory is poorly used
- IDDFS expands factor of b more nodes at each iteration; not guaranteed here
Cutoff =3

RBFS

- Recursive best first search
- Objective: Linear space without discarding as much information as IDA*
- Idea: Remember best alternative
- Rewind, try alternatives if "best first" path gets too expensive
- Remember costs on the way back up

SMA*

- Idea: Use all of available memory
- Discard the worst leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete
- Thrashing still possible

Recap

- Heuristics change how we think about search
- A* is optimal, complete
- Dramatic improvements in efficiency possible with good heuristics
- Many extensions possible, e.g., dealing with limited memory

