CompSci 270
Informed Search

Ron Parr
Department of Computer Science
Duke University

Thanks to Kris Hauser for many slides

Example
For an uninformed strategy, N; and
8 | 2 N, are just two nodes (at some
STATE osition in the search tree
3/4|7F—@ P)
Ny
5|1 1] 6
1 2 3
1 2 3 4 | 5 6
STATE
4|5 —O) 7| 8
718! 6 N, Goal state

Example

8 | 2
STATE
314 7F—@
N,
511
1| 2
STATE
4 |5 —O
N,
718

For a heuristic strategy counting the
number of misplaced tiles, N, is more
promising than N,

1123
41 5|6
7| 8
Goal state

Heuristic Function

The heuristic function h(N) > 0 estimates the cost to
go from STATE(N) to a goal state

Value is independent of the current search tree; it
depends only on STATE(N) and the goal test GOAL

Example:

5

8

4

2

1

7

3

6

STATE(N)

1123
4|56
718

Goal state

h(N) = number of misplaced numbered tiles = 6
[Why is it an estimate of the distance to the goal?]

Robot Navigation

YN
Ye ‘
2 2 XN Xg
hi(N) = [(xn = xg)" + (v — ¥g) (L, or Euclidean distance)
ho(N) = |xn — xg| + |yn — ¥4l (L, or Manhattan distance)

Informed/Heuristic Search

Idea: Give the search algorithm hints

Heuristic function: h(x)

h(x) = estimate of cost to goal from x

If h(x) is 100% accurate, then we can find
the goal in O(bd) time

How do we use this?

Greedy Best First Search

e Expand node with lowest h(x)

e (Implement priority queue on h)

e Optimal if h(x) is 100% correct

e How can we get into trouble with this?

What Price Greed?

What'’s broken with greedy search?

Best-First # Efficiency

1 Local-minimum problem
[T [T T [T T 1]

f(N) = h(N) = straight distance to the goal

A*

e Path cost so far: g(x)

e Total cost estimate: f(x) = g(x) + h(x)

e Maintain frontier as a priority queue (on f)
e O(bd) time if h is 100% accurate

e We want h to be an admissible heuristic

e Admissible: never overestimates cost

e Why admissible?
(guarantees optimality, completeness of A*!)

8-Puzzle Heuristics

5 8 1/12|3
4121 4 5|6
7/3|6 78
STATE(N) Goal state

¢ h;(N) = number of misplaced tiles = 6

is 7?7

Robot Navigation Heuristics

[|
a

Cost of one horizontal/vertical step =1

Cost of one diagonal step = J2

m) = Gy —x,)" + Ow—,)°

Robot Navigation Heuristics

[]
a

Cost of one horizontal/vertical step =1

Cost of one diagonal step = J2

ha(N) = |xn — xg| + |yn — ¥q| is 227

Robot Navigation

Robot Navigation

f(N) = h(N), with h(N) = Manhattan distance to the goal
(greedy, not A*)

Robot Navigation

f(N) = h(N), with h(N) = Manhattan distance to the goal
(greedy, not A*)

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A¥)

8+3|7+4|6+3

7+2

6+1 3 |2+49[1+10

0+11f 1 2

7+0]16+1

8+1|7+2|6+3|5+4

Some A* Properties

e Admissibility implies h(x)=0 if x is a goal state

e Above implies f(x)=cost to goal if x is a goal
state and x is popped off the queue

e What if h(x)=0 for all x?
— Is this admissible?
— What does the algorithm do?

Result #1

A* is complete and optimal

[This result holds if nodes revisiting states are
not discarded — otherwise you might find a
shortcut and then discard it.]

Proof (1/2)

e If a solution exists, A* terminates and
eturns a solution
- For each node N on the frontier,

f(N) = g(N)+h(N) > g(N) > d(N)xe,
where d(N) is the depth of N in the tree

10

Proof (1/2)

e If a solution exists, A* terminates and
eturns a solution
- For each node N on the frontier,

f(N) = g(N)+h(N) > g(N) > d(N)xe,
where d(N) is the depth of N in the tree

8 -As long as A* hasn’t terminated, a node K
on the frontier lies on a solution path

Proof (1/2)

e If a solution exists, A* terminates and

returns a solution

- For each node N on the frontier,
f(N) = g(N)+h(N) > g(N) > d(N)xe,
where d(N) is the depth of N in the tree

-As long as A* hasn’t terminated, a node K
on the frontier lies on a solution path

- Since each node expansion increases the
length of one path, K will eventually be
selected for expansion, unless a solution is
found along another path

11

Proof (2/2)

e Whenever A* pops a goal node, the path
o this node is optimal

- C*= cost of the optimal solution path

“.‘ - G": non-optimal goal node in the frontier
| f(G’) = g(G’) + h(G’) = c(G") > C*

3
- A node K in the frontier lies on an optimal

path:
f(K) = g(K) + h(K) < C*

- So, G’ will not be selected for expansion

What to do with revisited states?

The heuristic h is clearly
admissible

12

What to do with revisited states?

f=1+10 ©2+1

4490

0 104

If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

= Not harmful to discard a node revisiting a state

if cost of the new path state is > cost of previous path
[so, in particular, one can discard a node if it re-visits a state
already visited by one of its ancestors — compare w/DFS]

= |f A* pushes revisited states, it remains optimal, but

states may be re-visited multiple times
[the size of the search tree can be exponential in number of visited

states]

= Fortunately, for a large family of admissible heuristics —
consistent heuristics — there is a much more efficient
way to handle revisited states

13

Consistent Heuristic

e An admissible heuristic h is consistent (or
monotone) if for each node N and each
child N’ of N: h(N) <c(N,N’) + h(N’) N

c(N,Nf\
N'Q_thiN)
h(N')

(triangle inequality)

- Intuition: a consistent heuristics becomes more
precise as we get deeper in the search tree

Consistency Violation

If h tells us that N is 100
units from the goal, then
moving from N along an
arc costing 10 units should
not lead to a node N’ that
h estimates to be 10 units
away from the goal

(triangle inequality
violation)

14

Consistent Heuristic
(alternative definition)

e A heuristic h is consistent (or monotone) if

1. for each node N and each child N’ of N:
h(N) < c(N,N’) + h(N’) N

2. for each goal node G: c(N,Nf
h(G)=0 N'Q 1h(N)

\

h(N")s 1

(triangle inequality)

Admissibility and Consistency

e Any consistent heuristic is also admissible

e An admissible heuristic may not be consistent,
but many admissible heuristics are

15

8-Puzzle

5 8 1 2 | 3
4 | 2 1 4 | 51| 6
7| 3] 6 7| 8
N
N[STATE(N) goal
NQ 4 h
N \ = h;(N) = number of misplaced tiles
“ = h,(N) = sum of the (Manhattan) distances
h(N) < c(N,N’) + h(N") of every tile to its goal position

are both consistent (why?)

Reasoning About Consistency

e Example: Manhattan Distance in 8-puzzle

— MD(N,G) <= MD(N,N’)+MD(N’,G)

— h(N) = MD(N,G)

— h(N’) = MD(N’,G)

— h(N) <= MD(N,N’)+h(N’)

— C(N,N’) >= MD(N,N’)

— h(N) <= C(N,N’)+h(N’) c(N,N)
e Note: Not just showing that h obeys triangle
inequality between pairs of states h(N') S

h(N) < ¢(N,N’) + h(N’)

16

Robot Navigation

h(N N,N’) + h(N’ . .
(V)= A+ Rl Cost of one horizontal/vertical step = 1

Cost of one diagonal step = \/E

> > .
hy(N) = \/(XN —x)" + (yw — ¥4) . is cc.)n5|ste.nt .
is consistent if moving along

diagonals is not allowed, and
not consistent otherwise

ha(N) = |xn — x4| + |yn — ¥4

Result #2

e If his consistent, then whenever A*
expands a node, it has already found an
optimal path to this node’s state

17

Proof (1/2)

1. Consider a node N and its child N’
Since h is consistent: h(N) < c(N,N’)+h(N’)

f(N) =g(N)+h(N) < g(N)+c(N,N’)+h(N") = f(N’)
So, f is non-decreasing along any path

Proof (2/2)

2. Ifanode Kis selected for expansion, then any other node N in the frontier
has f(N) > f(K) ®

¢ If one node N lies on another path to the state of K, the cost of this other
path is no smaller than that of the path to K:

f(N') = f(N) = f(K) and h(N’) = h(K)
So, g(N’) = g(K)

18

Result #2

If h is consistent, then whenever A* expands a node, it has
already found an optimal path to this node’s state

¢ If one node N lies on another path to the state of K, the cost of this other
path is no smaller than that of the path to K:

f(N’) > f(N) > f(K) and h(N’) = h(K)
So, g(N’) = g(K)

Implication of Result #2

The pathto N - \
is the optimal - \
pathto S s \

Pid \
N 7 N Ng
(F’ S S

N, can be

j discarded
N>

19

Revisited States with Consistent Heuristic
(Modified Search Algorithm #3)

e When a node is expanded, store its state into
VISITED

e When a new node N’ is generated:

Not as important — can safely ignore these
checks and just push onto the queue — Why?

Heuristic Accuracy

e Let h, and h, be two consistent heuristics such that for all

nodes N:
h,(N) < h,(N)

* h, is said to be more accurate (or more informed) than h,

5 8 1123 . .
= hy(N) = number of misplaced tiles

4121 4|5|6
= h,(N) = sum of distances of every tile
71316 718 to its goal position

STATE(N) Goal state

= h,is more accurate than h;

20

Result #3

e Let h, be more accurate than h;

e Let A;* be A* using h;
and A,* be A* using h,

e Whenever a solution exists, all the nodes
expanded by A,*, except possibly for some
nodes such that

f1(N) = f5(N) = C* (cost of optimal solution)
are also expanded by A;*

Proof

e C* = cost of optimal solution

e Every node N such that f(N) < C* is eventually expanded. No node N such that
f(N) > C* is ever expanded

e Every node N such that h(N) < C*—g(N) is eventually expanded. So, every
node N such that hy(N) < C*—g(N) is expanded by A,*. Since h1(N) < hy(N), N is
also expanded by A;*

e |If there are several nodes N such that f1(N) = f,(N) = C* (such nodes include
the optimal goal nodes, if there exists a solution), A;* and A,* may or may
not expand them in the same order (until one goal node is expanded)

21

How to create good heuristics?

¢ By solving relaxed problems at each node

¢ Inthe 8-puzzle, the sum of the distances of each tile to its goal
position (h,) corresponds to solving 8 simple problems:

5 ¢ L] 2]9 d;is the length of the
2/1|—|4|5]|6 shortest path to move
71316 718 tile i to its goal position,
ignoring the other tiles,
e.g,ds =2
5 > 8
—~| |s ha(N) =)" di(N)
i=1

¢ [tignores negative interactions among tiles

Can we do better?

e For example, we could consider two more
complex relaxed problems:

5 8 1 3
di34 = length of the 412111—14!|5|6
shortest path to move
tiles1, 2, 3,and 4 to 713|6 7|8
their goal positions, d5678
ignoring the other tiles

|| |1]2]3 5/ |8
lefa] 3 -
7 6 7

e > h=d;,3, + dseg [disjoint pattern heuristic]
e How to compute d;,3, and dgg75?

Can we do better?

e For example, we could consider two more
complex relaxed problems:

d1534 = length of the 5 8 1123

ShOI’t ct nath +a A~ A o] 1 G | C c

tiles 1 = Several order-of-magnitude speedups
theirl for the 15- and 24-puzzle (see R&N)

ignor g tHEoter e = —~
1(2|3 5 8
14]2]1| |4 - >
7 6 7

* 2 h =dj,34 + dsgr5 [disjoint pattern heuristic]
e These distances are pre-computed and stored

[Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

Effective Branching Factor

e Used as measure the effectiveness of h

e Let n be the total number of nodes
expanded by A* for a particular problem
and d the depth of the solution

e The effective branching factor b” is defined
by fitting: n=1+b" + (b")2 +...+ (b")?

23

Experimental Results

(see R&N for details)
e 8-puzzle with:
— h; = number of misplaced tiles
— h, = sum of distances of tiles to their goal positions
e Random generation of many problem instances

* Average effective branching factors (number of
expanded nodes):

d |IDDFS A A

2 |245 179 179

6 |2.73 1.34 1.30

12 [2.78 (3,644,035) |1.42 (227) 1.24 (73)
16 |- 1.45 1.25

20 |-- 147 1.27

24 |- 148 (39,135) |1.26 (1,641)

Memory-bounded Search: Why?

We run out of memory before we run out of time
Problem: Need to remember entire search horizon

Solution: Remember only a partial search horizon

Issue: Maintaining optimality, completeness
Issue: How to minimize time penalty

Details: Not emphasized in class, but worth a skim so that you are
aware of the issues

24

Iterative Deepening A* (IDA*)

e |dea: Reduce memory requirement of A*
by applying cutoff on values of f

e Consistent heuristic function h
e Algorithm IDA*:
— Initialize cutoff to f(initial-node)

— Repeat:

e Perform cost-limited search by expanding all nodes
N such that f(N) < cutoff

¢ Reset cutoff to smallest value f of non-expanded
(leaf) nodes

Advantages/Drawbacks of IDA*

e Advantages:
— Still complete and optimal
— Requires less memory than A*
— Avoids the overhead to sort the frontier
(priority queue)
e Drawbacks:
— Discards a lot of information when it restarts
— Available memory is poorly used

— IDDFS expands factor of b more nodes at h=1
each iteration; not guaranteed here \

Cutoff =3 >< h=1

h=1

25

RBFS

Recursive best first search

Objective: Linear space without discarding as
much information as IDA*

Idea: Remember best alternative

Rewind, try alternatives if “best first” path gets
too expensive

Remember costs on the way back up

RBFS
Assume h=1, /

initially along alt=12

this path. /
Sat=s
alt=13 / a

Replace /‘“’ Return to best alternative
withf=11 /
/ alt=14

alt=16 -
\ alt= 15 Problem: Thrashing!

N

h=3

alt=11

26

SMA*

e |dea: Use all of available memory

e Discard the worst leaf when memory starts to
run out, to make room for new leaves

e Values get backed up to parents

e Optimal if solution fits in memory

e Complete

e Thrashing still possible Expand

Painful to implement ®

Replace ~ b=l \ h=1

with f=4
) G

Recap

* Heuristics change how we think about search

e A* is optimal, complete

e Dramatic improvements in efficiency possible
with good heuristics

e Many extensions possible, e.g., dealing with

limited memory

27

