
1

CompSci 270
Informed Search

Ron Parr
Department of Computer Science

Duke University

Thanks to Kris Hauser for many slides

Example
For an uninformed strategy, N1 and
N2 are just two nodes (at some
position in the search tree)

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

2

Example
For a heuristic strategy counting the
number of misplaced tiles, N2 is more
promising than N1

Goal state

N1

N2

STATE

STATE

1

2

3 4

5 6

7

8

1 2 3

4 5

67 8

1 2 3

4 5 6

7 8

Heuristic Function

• The heuristic function h(N) ³ 0 estimates the cost to
go from STATE(N) to a goal state

Value is independent of the current search tree; it
depends only on STATE(N) and the goal test GOAL

• Example:

• h(N) = number of misplaced numbered tiles = 6
• [Why is it an estimate of the distance to the goal?]

4

14
7

5
2

63

8

STATE(N)

64
7

1
5
2

8

3

Goal state

3

Robot Navigation

xN

yN
N

xg

yg

(L2 or Euclidean distance)

(L1 or Manhattan distance)

Informed/Heuristic Search

• Idea: Give the search algorithm hints
• Heuristic function: h(x)
• h(x) = estimate of cost to goal from x
• If h(x) is 100% accurate, then we can find

the goal in O(bd) time

• How do we use this?

4

Greedy Best First Search

• Expand node with lowest h(x)
• (Implement priority queue on h)
• Optimal if h(x) is 100% correct
• How can we get into trouble with this?

What Price Greed?

h=1 h=1 h=1 h=1 h=1Initial
State Goal

h=2

What’s broken with greedy search?

h=1

5

Best-First ¹ Efficiency

f(N) = h(N) = straight distance to the goal

Local-minimum problem

A*

• Path cost so far: g(x)
• Total cost estimate: f(x) = g(x) + h(x)
• Maintain frontier as a priority queue (on f)
• O(bd) time if h is 100% accurate
• We want h to be an admissible heuristic
• Admissible: never overestimates cost
• Why admissible?

(guarantees optimality, completeness of A*!)

6

8-Puzzle Heuristics

• h1(N) = number of misplaced tiles = 6
is ???

14
7

5
2

63

8

STATE(N)

64
7

1
5
2

8

3

Goal state

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

7

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

is ???

Robot Navigation

8

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal
(greedy, not A*)

Robot Navigation

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

5

f(N) = h(N), with h(N) = Manhattan distance to the goal
(greedy, not A*)

7

0

9

Robot Navigation
f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

0 211

58 7

7

3

4

7

6

7

6 3 2

8

6

45

23 3

36 5 24 43 5

54 6

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

8+3

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

8+3 7+47+4 6+5

5+6

6+3 5+6

2+7 3+8

4+7

5+6 4+7

3+8

4+7 3+83+8 2+92+9 3+10

2+9

3+8

2+9 1+101+100+110+11

Some A* Properties

• Admissibility implies h(x)=0 if x is a goal state
• Above implies f(x)=cost to goal if x is a goal

state and x is popped off the queue

• What if h(x)=0 for all x?
– Is this admissible?
– What does the algorithm do?

10

Result #1

A* is complete and optimal

[This result holds if nodes revisiting states are
not discarded – otherwise you might find a
shortcut and then discard it.]

Proof (1/2)

• If a solution exists, A* terminates and
returns a solution

- For each node N on the frontier,
f(N) = g(N)+h(N) ³ g(N) ³ d(N)´ϵ,
where d(N) is the depth of N in the tree

11

Proof (1/2)

• If a solution exists, A* terminates and
returns a solution

- For each node N on the frontier,
f(N) = g(N)+h(N) ³ g(N) ³ d(N)´ϵ,
where d(N) is the depth of N in the tree

-As long as A* hasn’t terminated, a node K
on the frontier lies on a solution path

K

Proof (1/2)

• If a solution exists, A* terminates and
returns a solution

- For each node N on the frontier,
f(N) = g(N)+h(N) ³ g(N) ³ d(N)´ϵ,
where d(N) is the depth of N in the tree

-As long as A* hasn’t terminated, a node K
on the frontier lies on a solution path

- Since each node expansion increases the
length of one path, K will eventually be
selected for expansion, unless a solution is
found along another path

K

12

Proof (2/2)

• Whenever A* pops a goal node, the path
to this node is optimal

K

- C*= cost of the optimal solution path

- G’: non-optimal goal node in the frontier
f(G’) = g(G’) + h(G’) = c(G’) > C*

- A node K in the frontier lies on an optimal
path:

f(K) = g(K) + h(K) £ C*

- So, G’ will not be selected for expansion

G’

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

The heuristic h is clearly
admissible

13

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

§ Not harmful to discard a node revisiting a state
if cost of the new path state is ³ cost of previous path
[so, in particular, one can discard a node if it re-visits a state
already visited by one of its ancestors – compare w/DFS]

§ If A* pushes revisited states, it remains optimal, but
states may be re-visited multiple times
[the size of the search tree can be exponential in number of visited
states]

§ Fortunately, for a large family of admissible heuristics –
consistent heuristics – there is a much more efficient
way to handle revisited states

14

Consistent Heuristic
• An admissible heuristic h is consistent (or

monotone) if for each node N and each
child N’ of N:

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

à Intuition: a consistent heuristics becomes more
precise as we get deeper in the search tree

h(N) £ c(N,N’) + h(N’)

Consistency Violation

N

N’
h(N)=100

h(N’)=10

c(N,N’)=10

(triangle inequality
violation)

If h tells us that N is 100
units from the goal, then
moving from N along an
arc costing 10 units should
not lead to a node N’ that
h estimates to be 10 units
away from the goal

15

Consistent Heuristic
(alternative definition)

• A heuristic h is consistent (or monotone) if
1. for each node N and each child N’ of N:

h(N) £ c(N,N’) + h(N’)
2. for each goal node G:

h(G) = 0

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

Admissibility and Consistency

• Any consistent heuristic is also admissible

• An admissible heuristic may not be consistent,
but many admissible heuristics are

16

8-Puzzle
1 2 3

4 5 6

7 8

12

3

4

5

67

8

STATE(N) goal

§ h1(N) = number of misplaced tiles
§ h2(N) = sum of the (Manhattan) distances

of every tile to its goal position
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)

Reasoning About Consistency

• Example: Manhattan Distance in 8-puzzle
– MD(N,G) <= MD(N,N’)+MD(N’,G)
– h(N) = MD(N,G)
– h(N’) = MD(N’,G)
– h(N) <= MD(N,N’)+h(N’)
– C(N,N’) >= MD(N,N’)
– h(N) <= C(N,N’)+h(N’)

• Note: Not just showing that h obeys triangle
inequality between pairs of states

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)

17

Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

is consistent
is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)

Result #2

• If h is consistent, then whenever A*
expands a node, it has already found an
optimal path to this node’s state

18

Proof (1/2)

1. Consider a node N and its child N’
Since h is consistent: h(N) £ c(N,N’)+h(N’)

f(N) = g(N)+h(N) £ g(N)+c(N,N’)+h(N’) = f(N’)
So, f is non-decreasing along any path

N

N’

Proof (2/2)
2. If a node K is selected for expansion, then any other node N in the frontier

has f(N) ³ f(K)

• If one node N lies on another path to the state of K, the cost of this other
path is no smaller than that of the path to K:

f(N’) ³ f(N) ³ f(K) and h(N’) = h(K)
So, g(N’) ³ g(K)

K N

N’S

19

Proof (2/2)
2. If a node K is selected for expansion, then any other node N in the fringe

verifies f(N) ³ f(K)

• If one node N lies on another path to the state of K, the cost of this other
path is no smaller than that of the path to K:

f(N’) ³ f(N) ³ f(K) and h(N’) = h(K)
So, g(N’) ³ g(K)

K N

N’S

If h is consistent, then whenever A* expands a node, it has
already found an optimal path to this node’s state

Result #2

Implication of Result #2

N N1
S S1

The path to N
is the optimal
path to S

N2

N2 can be
discarded

20

Revisited States with Consistent Heuristic
(Modified Search Algorithm #3)

• When a node is expanded, store its state into
VISITED

• When a new node N’ is generated:
– If STATE(N’) is in VISITED, discard N’
– If there exists a node N’’ in the frontier such that

STATE(N’’) = STATE(N’), discard the node – N’ or N’’
– with the largest f (or, equivalently, g)

Not as important – can safely ignore these
checks and just push onto the queue – Why?

Heuristic Accuracy

• Let h1 and h2 be two consistent heuristics such that for all
nodes N:

h1(N) £ h2(N)
• h2 is said to be more accurate (or more informed) than h1

§ h1(N) = number of misplaced tiles
§ h2(N) = sum of distances of every tile

to its goal position

§ h2 is more accurate than h1

14
7

5
2

63

8

STATE(N)

64
7

1
5
2

8

3

Goal state

21

Result #3

• Let h2 be more accurate than h1

• Let A1* be A* using h1
and A2* be A* using h2

• Whenever a solution exists, all the nodes
expanded by A2*, except possibly for some
nodes such that

f1(N) = f2(N) = C* (cost of optimal solution)
are also expanded by A1*

Proof
• C* = cost of optimal solution

• Every node N such that f(N) < C* is eventually expanded. No node N such that
f(N) > C* is ever expanded

• Every node N such that h(N) < C*-g(N) is eventually expanded. So, every
node N such that h2(N) < C*-g(N) is expanded by A2*. Since h1(N) £ h2(N), N is
also expanded by A1*

• If there are several nodes N such that f1(N) = f2(N) = C* (such nodes include
the optimal goal nodes, if there exists a solution), A1* and A2* may or may
not expand them in the same order (until one goal node is expanded)

22

How to create good heuristics?
• By solving relaxed problems at each node
• In the 8-puzzle, the sum of the distances of each tile to its goal

position (h2) corresponds to solving 8 simple problems:

• It ignores negative interactions among tiles

14
7

5
2

63

8
64

7

1
5
2

8

3

5
5

Can we do better?
• For example, we could consider two more

complex relaxed problems:

• à h = d1234 + d5678 [disjoint pattern heuristic]
• How to compute d1234 and d5678?

14
7

5
2

63

8
64

7

1
5
2

8

3

3
2 14 4

1 2 3

d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

6
7

5
87

5

6

8

d5678

23

Can we do better?
• For example, we could consider two more

complex relaxed problems:

• à h = d1234 + d5678 [disjoint pattern heuristic]
• These distances are pre-computed and stored

[Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

14
7

5
2

63

8
64

7

1
5
2

8

3

3
2 14 4

1 2 3

d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

6
7

5
87

5

6

8

d5678

à Several order-of-magnitude speedups
for the 15- and 24-puzzle (see R&N)

Effective Branching Factor

• Used as measure the effectiveness of h
• Let n be the total number of nodes

expanded by A* for a particular problem
and d the depth of the solution

• The effective branching factor b* is defined
by fitting: n = 1 + b* + (b*)2 +...+ (b*)d

24

Experimental Results
(see R&N for details)

• 8-puzzle with:
– h1 = number of misplaced tiles
– h2 = sum of distances of tiles to their goal positions

• Random generation of many problem instances
• Average effective branching factors (number of

expanded nodes):

d IDDFS A1* A2*
2 2.45 1.79 1.79
6 2.73 1.34 1.30
12 2.78 (3,644,035) 1.42 (227) 1.24 (73)
16 -- 1.45 1.25
20 -- 1.47 1.27
24 -- 1.48 (39,135) 1.26 (1,641)

Memory-bounded Search: Why?

• We run out of memory before we run out of time

• Problem: Need to remember entire search horizon

• Solution: Remember only a partial search horizon

• Issue: Maintaining optimality, completeness
• Issue: How to minimize time penalty
• Details: Not emphasized in class, but worth a skim so that you are

aware of the issues

25

Iterative Deepening A* (IDA*)

• Idea: Reduce memory requirement of A*
by applying cutoff on values of f

• Consistent heuristic function h
• Algorithm IDA*:

– Initialize cutoff to f(initial-node)
– Repeat:

• Perform cost-limited search by expanding all nodes
N such that f(N) £ cutoff

• Reset cutoff to smallest value f of non-expanded
(leaf) nodes

Advantages/Drawbacks of IDA*
• Advantages:

– Still complete and optimal
– Requires less memory than A*
– Avoids the overhead to sort the frontier

(priority queue)

• Drawbacks:
– Discards a lot of information when it restarts
– Available memory is poorly used
– IDDFS expands factor of b more nodes at

each iteration; not guaranteed here
h=1 h=1

h=2 h=1Cutoff =3

26

RBFS

• Recursive best first search
• Objective: Linear space without discarding as

much information as IDA*

• Idea: Remember best alternative
• Rewind, try alternatives if “best first” path gets

too expensive
• Remember costs on the way back up

RBFS

alt = 12

alt = 11

alt = 9
alt = 13

alt = 14

alt = 16
alt = 15

h=3

Return to best alternative

Assume h=1,
initially along
this path.

Replace
with f = 11

Problem: Thrashing!

27

SMA*
• Idea: Use all of available memory
• Discard the worst leaf when memory starts to

run out, to make room for new leaves
• Values get backed up to parents
• Optimal if solution fits in memory
• Complete
• Thrashing still possible

h=1 h=1

h=3 h=4

Replace
with f=4

Expand

Painful to implement L

Recap

• Heuristics change how we think about search
• A* is optimal, complete
• Dramatic improvements in efficiency possible

with good heuristics

• Many extensions possible, e.g., dealing with
limited memory

