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Example
For an uninformed strategy, N1 and 
N2 are just two nodes (at some 
position in the search tree)
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Example
For a heuristic strategy counting the 
number of misplaced tiles,  N2 is more 
promising than N1
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Heuristic Function

• The heuristic function h(N) ³ 0 estimates the cost to 
go from STATE(N) to a goal state 

Value is independent of the current search tree; it 
depends only on STATE(N) and the goal test GOAL

• Example:

• h(N)  = number of misplaced numbered tiles = 6
• [Why is it an estimate of the distance to the goal?]
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Robot Navigation

xN

yN
N

xg

yg

(L2 or Euclidean distance)

(L1 or Manhattan distance)

Informed/Heuristic Search

• Idea:  Give the search algorithm hints
• Heuristic function:  h(x)
• h(x) = estimate of cost to goal from x
• If h(x) is 100% accurate, then we can find 

the goal in O(bd) time

• How do we use this?
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Greedy Best First Search

• Expand node with lowest h(x)
• (Implement priority queue on h)
• Optimal if h(x) is 100% correct
• How can we get into trouble with this?

What Price Greed?

h=1 h=1 h=1 h=1 h=1Initial
State Goal

h=2

What’s broken with greedy search?

h=1
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Best-First ¹ Efficiency

f(N) = h(N) = straight distance to the goal

Local-minimum problem

A*

• Path cost so far: g(x)
• Total cost estimate: f(x) = g(x) + h(x)
• Maintain frontier as a priority queue (on f)
• O(bd) time if h is 100% accurate
• We want h to be an admissible heuristic
• Admissible:  never overestimates cost
• Why admissible? 

(guarantees optimality, completeness of A*!)
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8-Puzzle Heuristics

• h1(N)  = number of misplaced tiles = 6
is ???
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2
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Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

is ???

Robot Navigation
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Robot Navigation
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f(N) = h(N), with h(N) = Manhattan distance to the goal
(greedy, not A*)
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Robot Navigation
f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal 
(A*)
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Some A* Properties

• Admissibility implies h(x)=0 if x is a goal state
• Above implies f(x)=cost to goal if x is a goal 

state and x is popped off the queue

• What if h(x)=0 for all x?
– Is this admissible?
– What does the algorithm do?
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Result #1

A* is complete and optimal

[This result holds if nodes revisiting states are 
not discarded – otherwise you might find a 
shortcut and then discard it.]

Proof (1/2)

• If a solution exists, A* terminates and 
returns a solution

- For each node N on the frontier, 
f(N) = g(N)+h(N) ³ g(N) ³ d(N)´ϵ, 
where d(N) is the depth of N in the tree
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Proof (1/2)

• If a solution exists, A* terminates and 
returns a solution

- For each node N on the frontier, 
f(N) = g(N)+h(N) ³ g(N) ³ d(N)´ϵ, 
where d(N) is the depth of N in the tree

-As long as A* hasn’t terminated, a node K   
on the frontier lies on a solution path

K

Proof (1/2)

• If a solution exists, A* terminates and 
returns a solution

- For each node N on the frontier, 
f(N) = g(N)+h(N) ³ g(N) ³ d(N)´ϵ, 
where d(N) is the depth of N in the tree

-As long as A* hasn’t terminated, a node K   
on the frontier lies on a solution path

- Since each node expansion increases the 
length of one path, K will eventually be 
selected for expansion, unless a solution is 
found along another path

K
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Proof (2/2)

• Whenever A* pops a goal node, the path 
to this node is optimal

K

- C*= cost of the optimal solution path 

- G’: non-optimal goal node in the frontier
f(G’) = g(G’) + h(G’) = c(G’) > C*

- A node K in the frontier lies on an optimal 
path:

f(K) = g(K) + h(K) £ C*

- So, G’ will not be selected for expansion

G’

What to do with revisited states?

c = 1

100

21

2

h = 100

0

90

1

The heuristic h is clearly 
admissible
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What to do with revisited states?

c = 1
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21

2

h = 100

0

90

1

104

4+90

f = 1+100 2+1

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

§ Not harmful to discard a node revisiting a state 
if cost of the new path state is ³ cost of previous path
[so, in particular, one can discard a node if it re-visits a state 
already visited by one of its ancestors – compare w/DFS]

§ If A* pushes revisited states, it remains optimal, but 
states may be re-visited multiple times 
[the size of the search tree can be exponential in number of visited 
states]

§ Fortunately, for a large family of admissible heuristics –
consistent heuristics – there is a much more efficient 
way to handle revisited states
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Consistent Heuristic
• An admissible heuristic h is consistent (or 

monotone) if for each node N and each 
child N’ of N:

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

à Intuition: a consistent heuristics becomes more 
precise as we get deeper in the search tree

h(N) £ c(N,N’) + h(N’)

Consistency Violation

N

N’
h(N)=100

h(N’)=10

c(N,N’)=10

(triangle inequality
violation)

If h tells us that N is 100 
units from the goal,  then 
moving from N along an 
arc costing 10 units should
not lead to a node N’ that 
h estimates to be 10 units 
away from the goal
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Consistent Heuristic
(alternative definition)

• A heuristic h is consistent (or monotone) if 
1. for each node N and each child N’ of N:

h(N) £ c(N,N’) + h(N’)
2. for each goal node G:

h(G) = 0

(triangle inequality)

N

N’ h(N)

h(N’)

c(N,N’)

Admissibility and Consistency

• Any consistent heuristic is also admissible

• An admissible heuristic may not be consistent, 
but many admissible heuristics are
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8-Puzzle
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STATE(N) goal

§ h1(N)  = number of misplaced tiles
§ h2(N) = sum of the (Manhattan) distances 

of every tile to its goal position
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)

Reasoning About Consistency

• Example: Manhattan Distance in 8-puzzle
– MD(N,G) <= MD(N,N’)+MD(N’,G)
– h(N) = MD(N,G)
– h(N’) = MD(N’,G)
– h(N) <= MD(N,N’)+h(N’)
– C(N,N’) >= MD(N,N’)
– h(N) <= C(N,N’)+h(N’)

• Note: Not just showing that h obeys triangle
inequality between pairs of states

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)
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Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

is consistent
is consistent if moving along 
diagonals is not allowed, and 
not consistent otherwise

N

N’ h(N)

h(N’)

c(N,N’)

h(N) £ c(N,N’) + h(N’)

Result #2

• If h is consistent, then whenever A* 
expands a node, it has already found an 
optimal path to this node’s state
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Proof (1/2)

1. Consider a node N and its child N’ 
Since h is consistent: h(N) £ c(N,N’)+h(N’)

f(N)  = g(N)+h(N)  £ g(N)+c(N,N’)+h(N’) =  f(N’)
So, f is non-decreasing along any path

N

N’

Proof (2/2)
2. If a node K is selected for expansion, then any other node N in the frontier 

has f(N) ³ f(K)

• If one node N lies on another path to the state of K, the cost of this other 
path is no smaller than that of the path to K:

f(N’) ³ f(N) ³ f(K)    and     h(N’) = h(K)
So, g(N’) ³ g(K)

K N

N’S
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Proof (2/2)
2. If a node K is selected for expansion, then any other node N in the fringe 

verifies f(N) ³ f(K)

• If one node N lies on another path to the state of K, the cost of this other 
path is no smaller than that of the path to K:

f(N’) ³ f(N) ³ f(K)    and     h(N’) = h(K)
So, g(N’) ³ g(K)

K N

N’S

If h is consistent, then whenever A* expands a node, it has 
already found an optimal path to this node’s state

Result #2

Implication of Result #2

N N1
S S1

The path to N 
is the optimal 
path to S 

N2

N2 can be 
discarded
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Revisited States with Consistent Heuristic 
(Modified Search Algorithm #3)

• When a node is expanded, store its state into 
VISITED 

• When a new node N’ is generated:
– If STATE(N’) is in VISITED, discard N’
– If there exists a node N’’ in the frontier such that 

STATE(N’’) = STATE(N’), discard the node – N’ or N’’ 
– with the largest f (or, equivalently, g)

Not as important – can safely ignore these
checks and just push onto the queue – Why?

Heuristic Accuracy

• Let h1 and h2 be two consistent heuristics such that for all 
nodes N: 

h1(N) £ h2(N)
• h2 is said to be more accurate (or more informed) than h1

§ h1(N) = number of misplaced tiles 
§ h2(N) = sum of distances of every tile 

to its goal position

§ h2 is more accurate than h1
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Result #3

• Let h2 be more accurate than h1

• Let  A1* be A* using h1
and A2* be A* using h2

• Whenever a solution exists, all the nodes 
expanded by A2*, except possibly for some 
nodes such that 

f1(N) = f2(N) = C* (cost of optimal solution)
are also expanded by A1* 

Proof
• C* = cost of optimal solution

• Every node N such that f(N) < C* is eventually expanded. No node N such that 
f(N) > C* is ever expanded

• Every node N such that h(N) < C*-g(N) is eventually expanded. So, every 
node N such that h2(N) < C*-g(N) is expanded by A2*. Since h1(N) £ h2(N), N is 
also expanded by A1*

• If there are several nodes N such that f1(N) = f2(N) = C* (such nodes include 
the optimal goal nodes, if there exists a solution), A1* and A2* may or may 
not expand them in the same order (until one goal node is expanded)
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How to create good heuristics?
• By solving relaxed problems at each node
• In the 8-puzzle, the sum of the distances of each tile to its goal 

position (h2) corresponds to solving 8 simple problems:

• It ignores negative interactions among tiles 
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Can we do better?
• For example, we could consider two more 

complex relaxed problems:

• à h = d1234 + d5678 [disjoint pattern heuristic]
• How to compute d1234 and d5678?
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d1234 = length of the 
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Can we do better?
• For example, we could consider two more 

complex relaxed problems:

• à h = d1234 + d5678 [disjoint pattern heuristic]
• These distances are pre-computed and stored 

[Each requires generating a tree of 3,024 nodes/states (breadth-first search)]
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d1234 = length of the 
shortest path to move 
tiles 1, 2, 3, and 4 to 
their goal positions, 
ignoring the other tiles 
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à Several order-of-magnitude speedups 
for the 15- and 24-puzzle (see R&N)

Effective Branching Factor

• Used as measure the effectiveness of h
• Let n be the total number of nodes 

expanded by A* for a particular problem 
and d the depth of the solution

• The effective branching factor b* is defined 
by fitting: n = 1 + b* + (b*)2 +...+ (b*)d
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Experimental Results
(see R&N for details)

• 8-puzzle with:
– h1 = number of misplaced tiles
– h2 = sum of distances of tiles to their goal positions

• Random generation of many problem instances
• Average effective branching factors (number of 

expanded nodes):

d IDDFS A1* A2*
2 2.45 1.79 1.79
6 2.73 1.34 1.30
12 2.78 (3,644,035) 1.42 (227) 1.24 (73)
16 -- 1.45 1.25
20 -- 1.47 1.27
24 -- 1.48 (39,135) 1.26 (1,641)

Memory-bounded Search: Why?

• We run out of memory before we run out of time

• Problem:  Need to remember entire search horizon

• Solution:  Remember only a partial search horizon

• Issue:  Maintaining optimality, completeness
• Issue:  How to minimize time penalty
• Details: Not emphasized in class, but worth a skim so that you are 

aware of the issues
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Iterative Deepening A* (IDA*)

• Idea: Reduce memory requirement of A* 
by applying cutoff on values of f

• Consistent heuristic function h
• Algorithm IDA*:

– Initialize cutoff to f(initial-node)
– Repeat:

• Perform cost-limited search by expanding all nodes 
N such that f(N) £ cutoff

• Reset cutoff to smallest value f of non-expanded 
(leaf) nodes

Advantages/Drawbacks of IDA*
• Advantages:

– Still complete and optimal
– Requires less memory than A*
– Avoids the overhead to sort the frontier 

(priority queue)

• Drawbacks:
– Discards a lot of information when it restarts
– Available memory is poorly used 
– IDDFS expands factor of b more nodes at 

each iteration; not guaranteed here
h=1 h=1

h=2 h=1Cutoff =3
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RBFS

• Recursive best first search
• Objective: Linear space without discarding as 

much information as IDA*

• Idea:  Remember best alternative
• Rewind, try alternatives if “best first” path gets 

too expensive
• Remember costs on the way back up

RBFS

alt = 12

alt = 11

alt = 9
alt = 13

alt = 14

alt = 16
alt = 15

h=3

Return to best alternative

Assume h=1,
initially along
this path.

Replace
with f = 11

Problem:  Thrashing!



27

SMA*
• Idea:  Use all of available memory
• Discard the worst leaf when memory starts to 

run out, to make room for new leaves
• Values get backed up to parents
• Optimal if solution fits in memory
• Complete
• Thrashing still possible

h=1 h=1

h=3 h=4

Replace
with f=4

Expand

Painful to implement L

Recap

• Heuristics change how we think about search
• A* is optimal, complete
• Dramatic improvements in efficiency possible 

with good heuristics

• Many extensions possible, e.g., dealing with 
limited memory


