Reinforcement Learning

Ron Parr
CompSci 370
Department of Computer Science
Duke University

With thanks to Kris Hauser for some content

RL Highlights

• Everybody likes to learn from experience
• Use ML techniques to generalize from relatively small amounts of experience

• Some notable successes:
 – Backgammon, Go
 – Flying a helicopter upside down
 – Atari Games

• Sutton & Barto RL Book is one of the most cited references in CS (42K citations as of 3/21)
Comparison w/Other Kinds of Learning

• Learning often viewed as:
 – Classification (supervised), or
 – Model learning (unsupervised)

• RL is between these (delayed signal)

• What the last thing that happens before an accident?

Why We Need RL

• Where do we get transition probabilities?

• How do we store them?
 • Big problems have big models
 • Model size is quadratic in state space size

• Where do we get the reward function?
RL Framework

- Learn by “trial and error”
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL for Our Game Show

- Problem: We don’t know probability of answering correctly

- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game
Model Learning Approach

• Learn model, solve
• How to learn a model:
 – Take action a in state s, observe s’
 – Take action a in state s, n times
 – Observe s’ m times
 – P(s’|s,a) = m/n
 – Fill in transition matrix for each action
 – Compute avg. reward for each state
• Solve learned model as an MDP (previous lecture)

Limitations of Model Learning

• Partitions learning, solution into two phases
• Model may be large
 – Hard to visit every state lots of times
 – Note: Can’t completely get around this problem...
• Model storage is expensive
• Model manipulation is expensive
First steps: Passive RL

- Observe execution trials of an agent that acts according to some unobserved policy π
- Problem: estimate the value function V^π

[Recall $V^\pi(s) = \mathbb{E}_{S(t)}[\gamma^t R(S_t)]$ where S_t is the random variable denoting the distribution of states at time t]

Direct Utility Estimation

1. Observe trials $t^{(i)}=(s_0^{(i)}, a_1^{(i)}, s_1^{(i)}, r_1^{(i)}, ..., a_t^{(i)}, s_t^{(i)}, r_t^{(i)})$ for $i=1, ..., n$
2. For each state $s \in S$:
 3. Find all trials $t^{(i)}$ that pass through s
 4. Compute subsequent value $V^{(i)}(s) = \sum_{k=1}^{t} \gamma^{t-k} r_t^{(i)}$
 5. Set $V^\pi(s)$ to the average observed values

Limitations: Clunky, learns only when an end state is reached
Incremental (“Online”) Function Learning

- Data is streaming into learner
 \[x_1, y_1, \ldots, x_n, y_n \quad y_i = f(x_i) \]
- Observes \(x_{n+1} \) and must make prediction for next time step \(y_{n+1} \)
- “Batch” approach:
 - Store all data at step \(n \)
 - Use your learner of choice on all data up to time \(n \), predict for time \(n+1 \)
- Can we do this using less memory?

Example: Mean Estimation

- \(y_i = \theta + \) error term \quad \text{(constant - no x’s)}
- Current estimate \(\theta_n = 1/n \sum_{i=1}^{n} y_i \)

\[
\theta_{n+1} = 1/(n+1) \sum_{i=1}^{n+1} y_i \\
= 1/(n+1) \left(y_{n+1} + \sum_{i=1}^{n} y_i \right) \\
= 1/(n+1) \left(y_{n+1} + n \theta_n \right) \\
= 1/(n+1) \left(y_{n+1} + (n+1) \theta_n - \theta_n \right) \\
= \theta_n + 1/(n+1) \left(y_{n+1} - \theta_n \right)
\]
Example: Mean Estimation

- $y_i = \theta + \text{error term} \quad \text{(constant - no } x's\text{)}$
- Current estimate $\theta_n = \frac{1}{n} \sum_{i=1}^{n} y_i$

\[\theta_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} y_i \]
\[= \frac{1}{n+1} (y_{n+1} + \sum_{i=1}^{n} y_i) \]
\[= \frac{1}{n+1} (y_{n+1} + n \theta_n) \]
\[= \frac{1}{n+1} (y_{n+1} + (n+1) \theta_n - \theta_n) \]
\[= \theta_n + \frac{1}{n+1} (y_{n+1} - \theta_n) \]
Example: Mean Estimation

• $\theta_{n+1} = \theta_n + 1/(n+1) \ (y_{n+1} - \theta_n)$
• Only need to store n, θ_n

Learning Rates

• In fact, $\theta_{n+1} = \theta_n + \alpha_n \ (y_{n+1} - \theta_n)$ converges to the mean for any α_n such that:
 - $\alpha_n \to 0$ as $n \to \infty$
 - $\sum \alpha_n \to \infty$
 - $\sum \alpha_n^2 \to C < \infty$
• $O(1/n)$ does the trick
• If α_n is close to 1, then the estimate shifts strongly to recent data; close to 0, and the old estimate is preserved
Learning Rates in RL in Practice

• Maintain a per-state count $N[s]$
• Learning rate is function of $N[s]$, $\alpha(N[s])$
• To satisfy theory: $\alpha(N[s])=1/N(s)$
• Often viewed as too slow
 – α drops quickly
 – Convergence is slow
• In practice, often a floor on, α, e.g., $\alpha = 0.01$
• Floor leads to faster learning, but less stability

Online Implementation

1. Store counts $N[s]$ and estimated values $V^0(s)$ (initialize to 0, typically)
2. After a trial t, for each state s in the trial:
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^t(s) \leftarrow V^t(s)+\alpha(N[s])(V^t(s)-V^t(s))$

Doesn’t require storing all trajectories, but...
• Simple averaging
• Slow learning, because Bellman equation is not used to pass knowledge between adjacent states

$\alpha(N[s])=1/N(s)$
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s) + \alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s))$

$V_{t+1}(s) = R(s) + \gamma \sum_{a \in \text{next}(s,a)} P(s'|s,a)V_t(s')$

- Online estimation of mean over value next states
- Instead of averaging at the level of trajectories...
- Average at the level of states
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s) + \alpha(N[s])(r + \gamma V^\pi(s') - V^\pi(s))$

With learning rate
$\alpha = 0.5$
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s))$

With learning rate $\alpha=0.5$

After a second trajectory from start to +1
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s)+\alpha(N[s])(r+\gamma V^\pi(s')-V^\pi(s))$

With learning rate $\alpha=0.5$

After a third trajectory from start to $+1$

Our luck starts to run out on the fourth trajectory
Temporal Difference Learning

1. Store counts $N[s]$ and estimated values $V^\pi(s)$
2. For each observed transition (s,r,a,s'):
 3. Set $N[s] \leftarrow N[s]+1$
 4. Adjust value $V^\pi(s) \leftarrow V^\pi(s) + \alpha(N[s])(r + \gamma V^\pi(s') - V^\pi(s))$

With learning rate $\alpha=0.5$

But we recover...

...and reach the goal!

- For any s, distribution of s' approaches $P(s' \mid s, \pi(s))$
- Uses relationships between adjacent states to adjust utilities toward equilibrium
- Unlike direct estimation, learns before trial is terminated
Using TD for Control

• Recall value iteration:

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s' | s,a)V'(s') \]

• Why not pick the maximizing \(a \) and then do:

\[V(s) = V(s) + \alpha(N(s))(r + \gamma V(s') - V(s)) \]

– \(s' \) is the observed next state after taking action \(a \)

What breaks?

• Action selection
 – How do we pick \(a \)?
 – Need to \(P(s' | s,a) \), but the reason why we’re doing RL is that we don’t know this!

• Even if we magically knew the best action:
 – Can only learn the value of the policy we are following
 – If initial guess for \(V \) suggests a stupid policy, we’ll never learn otherwise
Q-Values

- Learning V is not enough for action selection because a transition model is needed
- Solution: learn Q-values: Q(s,a) is the utility of choosing action a in state s
- “Shift” Bellman equation
 - V(s) = \max_a Q(s,a)
 - Q(s,a) = R(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')

- So far, everything is the same... but what about the learning rule?

Q-learning Update

- Recall TD:
 - Update: V(s) \leftarrow V(s) + \alpha(N[s])(r+\gamma V(s') - V(s))
 - Use P to pick actions? a \leftarrow \arg max_a \sum_{s'} P(s'|s,a)V(s')
- Q-Learning:
 - Update: Q(s,a) \leftarrow Q(s,a) + \alpha(N[s,a])(r+\gamma \max_{a'}Q(s',a')-Q(s,a))
 - Select action: a \leftarrow \arg max_a Q(s,a)
- Key difference: average over P(s'|s,a) is "baked in" to the Q function
- Q-learning is therefore a model-free active learner
Q-learning vs. TD-learning

- TD converges to value of policy you are following
- Q-learning converges to values of optimal policy independent of whatever policy you follow during learning!
- Caveats:
 - Converges in limit, assuming all states are visited infinitely often
 - In case of Q-learning, all states and actions must be tried infinitely often

Note: If there is only one action possible in each state, then Q-learning and TD-learning are identical

Brief Comments on Learning from Demonstration

- LfD is a powerful method to convey human expertise to (ro)bots
- Useful for imitating human policies
- Less useful for surpassing human ability (but can smooth out noise in human demos)
- Used, e.g., for acrobatic helicopter flight
Advanced (but unavoidable) Topics

- Exploration vs. Exploitation

- Value function approximation

Exploration vs. Exploitation

- Greedy strategy purely exploits its current knowledge
 - The quality of this knowledge improves only for those states that the agent observes often

- A good learner must perform exploration in order to improve its knowledge about states that are not often observed
 - But pure exploration is useless (and costly) if it is never exploited
Restaurant Problem

Exploration vs. Exploitation in Practice

- Can assign an “exploration bonus” to parts of the world you haven’t seen much

- In practice ε-greedy action selection is used most often
Value Function Representation

• Fundamental problem remains unsolved:
 – TD/Q learning solves model-learning problem, but
 – Large models still have large value functions
 – Too expensive to store these functions
 – Impossible to visit every state in large models

• Function approximation
 – Use machine learning methods to generalize
 – Avoid the need to visit every state

Function Approximation

• General problem: Learn function $f(s)$
 – Linear regression
 – Neural networks
 – State aggregation (violates Markov property)

• Idea: Approximate $f(s)$ with $g(s;w)$
 – g is some easily computable function of s and w
 – Try to find w that minimizes the error in g
Linear Regression Overview

(more when we do machine learning)

• Define a set of basis functions (vectors)
 \[\varphi_1(s), \varphi_2(s) \ldots \varphi_k(s) \]

• Approximate f with a weighted combination of these
 \[g(s; w) = \sum_{j=1}^{k} w_j \varphi_j(s) \]

• Example: Space of quadratic functions:
 \[\varphi_1(s) = 1, \varphi_2(s) = s, \varphi_3(s) = s^2 \]

• Orthogonal projection minimizes SSE

Updates with Approximation

• Recall regular TD update:
 \[V(s) \leftarrow V(s) + \alpha(N[s])(r + \gamma V(s') - V(s)) \]

• With function approximation:
 \[V(s) \approx V(s; w) \]

• Update:
 \[w^{i+1} = w^i + \alpha(r + \gamma V(s'; w) - V(s; w)) \nabla_w V(s; w) \]

Neural networks are a special case of this.
For linear value functions

- Gradient is trivial:
 \[V(s; w) = \sum_{j=1}^{k} w_j \varphi_j(s) \]
 \[\nabla_{w_j} V(s; w) = \varphi_j(s) \]

- Update is trivial:
 \[w_{j}^{i+1} = w_{j}^{i} + \alpha (r + \gamma V(s'; w) - V(s; w)) \varphi_j(s) \]

Properties of approximate RL

- Exact case (tabular representation) = special case
- Can be combined with Q-learning

- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn “on policy”
 - In general, convergence is not guaranteed
 - Chasing a moving target
 - Errors can compound

- Success has traditionally required very carefully chosen features
- Deepmind has recently had success using no feature engineering but lots of training data
How’d They Do That???

- Backgammon (Tesauro)
 - Neural network value function approximation
 - TD sufficient (known model)
 - Carefully selected inputs to neural network
 - About 1 million games played against self
- Atari games (DeepMind)
 - Used convolutional neural network for Q-functions
 - $O(\text{days})$ of play time per game
- Helicopter (Ng et al.)
 - Learning from expert demonstrations
 - Constrained policy space
 - Trained on a simulator

Conclusions

- Reinforcement learning solves an MDP
- Converges for exact value function representation
- Can be combined with approximation methods
- Good results require good features and/or lots of data