
1

CompSci 370
Uninformed Search

Ron Parr
Department of Computer Science

Duke University

With thanks to Vince Conitzer for some slides and figures and thanks to Kris Hauser for many slides

What is Search?

• Search is a basic problem-solving method
– We start in an initial state
– We examine states that are (usually) connected by a

sequence of actions to the initial state

• Note: Search is (usually) a thought experiment
(separate topic: Real Time Search)

• We aim to find a solution, which is a sequence of
actions that brings us from the initial state to the
goal state, possibly minimizing cost

2

Search vs. Web Search

• When we issue a search query using Google, does
Google really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm to find the most “popular”

web pages that are consistent with your query

Overview

• Problem Formulation

• Uninformed Search – constant cost
– DFS, BFS, IDDFS, etc.

• Non-constant cost

3

Problem Formulation

• Components of a search problem
– State space & initial state
– Actions
– Goal Test
– Edge costs (constant or varying per edge?)

• Optimal solution = lowest path cost to goal

Example: Path Planning, e.g.
Google Maps

1

2

1

1

1

3

3

2
1

1

2

1

Start

Goal

Find shortest source to destination using available roads

4

Other Search Problems

• Drug design
• Logistics

– Route planning
– Tour Planning

• Assembly sequencing
• Internet routing
• Robot motion/path planning

Robot Path Planning

What is the state space?

5

Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = sqrt(2)

Optimal Solution

This path is the shortest in the discretized state
space, but not in the original continuous space

6

Formulation #2

Cost of one step: length of segment

Formulation #2

Cost of one step: length of segment

Visibility graph

7

Solution Path

13

The shortest path in this state space is also the
shortest in the original continuous space

Take Home Points

• States = modeling choice about the world

• Trade offs often exist:
– Example 1: Discretization is easy to work with, but optimal

solution to may be suboptimal in the real world
– Example 2: More clever representations may require ingenuity

to discover, or use, but may have benefits in real world

• Always keep modeling and solving distinct in your head

8

Basic Search Concepts
• Search tree: Internal representation of our progress
• Nodes: Places in search tree

(states exist in the problem space)
• Actions: Connect states to next states (nodes to nodes)
• Expansion: Generation of next states (nodes)
• Arc cost: Cost of moving from one state to another
• Frontier: Set of nodes visited, but not expanded
• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d

(root is depth 0, possibility of multiple goal states!)

Example: 8-Puzzle

1

2

3 4

5 6

7

8 1 2 3

4 5 6

7 8

Initial state Goal state

State: Arrangement of 8 numbered tiles & empty tile on a 3x3 board

9

15-Puzzle

• Introduced (?) in 1878 by Sam Loyd, who
dubbed himself “America’s greatest puzzle-
expert”

17

15-Puzzle
• Sam Loyd offered $1,000 of his own

money to the first person who would
solve the following problem:

12

14

11

15

10

13

9

5 6 7 8

4321

12

15

11

14

10

13

9

5 6 7 8

4321

?

10

How big is the state space of the
(n2-1)-puzzle?

• 8-puzzle à 9! = 362,880 states
• 15-puzzle à 16! ~ 2.09 x 1013 states
• 24-puzzle à 25! ~ 1025 states

• But only half of these states are
reachable from any given state
(but you may not know that in advance)

• No one ever won the prize !!

11

Searching the State Space
• Often infeasible (or too expensive) to build

complete representation of the state graph

• Key difference from algorithms class, where it is
typically assumed that graph fits in memory

8-, 15-, 24-Puzzles
8-puzzle à 362,880 states

15-puzzle à 2.09 x 1013 states

24-puzzle à 1025 states

100 million states/sec

0.036 sec

~ 55 hours

> 109 years

12

Intractability

• Constructing the full state graph is intractable
for many interesting problems

• n-puzzle: (n+1)! states

Tractability of search hinges on the ability to
explore only a tiny portion of the state graph!

Searching the State Space

Search tree

13

Searching the State Space

Search tree

Searching the State Space

Search tree

14

Searching the State Space

Search tree

Searching the State Space

Search tree

15

Searching the State Space

Search tree

Search Nodes and States
8
3
5

2
4 7
1 6

8
3
5

2
4 7
1 6

8
3
5

2
4

7

1 6

8
3
5

2
4 7
1 6

8
3
5

24
7

1 6

8
3
5

2
4 7
1 6

If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite

16

Data Structure of a Node

PARENT-NODE
8
3
5

2
4 7
1 6

STATE

Depth of a node N
= length of path from root to N

(depth of the root = 0)

BOOKKEEPING

5Path-Cost

5Depth
RightAction

Expanded yes
...

CHILDREN

Node expansion
• The expansion of a node N of the

search tree consists of:
– Evaluating the successor function on

STATE(N)
– Generating a child of N for each

state returned by the function

• node generation ¹ node
expansion

1

2

3 4

5 6

7

8

N

1

3

5 6

8

1

3

4

5 6

7

82

4 7
2

1

2

3 4

5 6

7

8

17

Frontier of Search Tree
• The frontier is the set of all search nodes

that haven’t been expanded yet
8
3
5

2
4 7
1 6

8
3
5

2
4 7
1 6

8
3
5

2
4

7

1 6

8
3
5

2
4 7
1 6

8
3
5

72
4

1 6

8
3
5

2
4 7
1 6

Search Strategy

• The frontier is the set of all search nodes
that haven’t been expanded yet

• Implemented as a priority queue FRONTIER
– INSERT(node, FRONTIER)
– REMOVE(FRONTIER)

• The ordering of the nodes in FRONTIER
defines the search strategy

18

Generic Tree Search

TREE-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node, FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. For every state s’ in SUCCESSORS(s)
8. Create a new node N’ as a child of N
9. If GOAL?(s’) then return path or goal state
10. INSERT(N’, FRONTIER)

Expansion of N

Solution to the Search Problem
§ A solution is a path

connecting the initial
node to a goal node
(any goal)

§ The cost of a path is
the sum of the arc
costs along this path

§ An optimal solution
is a solution path of
minimum cost

§ There might be
no solution !

S

G

Nota bene: Typically assume costs > 0

19

Algorithm Performance Measures

• Completeness:
– Does it find a solution when one exists?

• Optimality:
– Does it return a min cost path whenever solution exists?

• Complexity (space or time):
– Resources required by the algorithm

38

Breadth-First Search

• FRONTIER is a FIFO Queue

2 3

4 5

1

6 7

FRONTIER = (1)

20

Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (2, 3)2 3

4 5

1

6 7

Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (3, 4, 5)2 3

4 5

1

6 7

21

Breadth-First Search

• FRONTIER is a FIFO Queue

FRRONTIER = (4, 5, 6, 7)2 3

4 5

1

6 7

BFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

Y

(Y for constant cost, N for arbitrary cost)

O(bd+1)

O(bd)

Note: We are counting nodes generated in time complexity;
textbook may be counting nodes expanded.

22

How bad is exponential in d?

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Bi-directional Search

!!!!

€

bd /2 + bd /2 << bd

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif

23

Issues with Bi-directional Search

• Uniqueness of goal
– Suppose goal is parking your car
– Huge no. of possible goal states

(configurations of other vehicles)

• Invertability of actions

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (1)

24

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (2, 3)

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

FRONTIER = (4, 5, 3)

25

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

26

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

27

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

28

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

29

DFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

(Y for finite trees, N for infinite trees)

N

O(bm+1) (m = depth we hit, m>d?)

O(bm) (bounded for trees)

Iterative Deepening

• Want:
– DFS memory requirements
– BFS optimality, completeness

• Idea:
– Do a depth-limited DFS for depth m
– Iterate over m

30

Iterative Deepening

Note: The IDDFS slides are animated, showing DFS running down to the red line on each slide.

Iterative Deepening

31

Iterative Deepening

IDDFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

Y

(whenever BFS is optimal)

O(bd+2)

O(bd)

32

Proof: Assume the tree bottoms out at depth d, BFS generates:

In the worst case, IDDFS does no more than:
2d+1 −1

)(2)12(2)1()12(212)12(11

00

1

0

1 dBFSd dd
d

i

d

i

i
d

i

i ´=-<+--=-=- ++

==

+

=

+ ååå

IDDFS vs. BFS
Theorem: IDDFS expands no more than twice as many nodes
for a binary tree as BFS.

What about b-ary trees? IDDFS relative cost is lower!

Non-constant Costs

• Arcs between states can have variable costs

• The cost of the path to each node N is
g(N) = S costs of arcs

• Breadth-first is no longer optimal

33

Uniform-Cost Search (UCS)
• Expand node in FRONTIER with the cheapest path so far, i.e.,

frontier is a priority queue prioritized on g(N)

S
0

1
A

5
B

15
CS G

A

B

C

5
1

15

10

5

5

G
11

G
10

Suboptimal path!

(how to fix this?)

Search Algorithm #2
TREE-SEARCH2(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. If GOAL?(s) then return path or goal state
8. For every state s’ in SUCCESSORS(s)
9. Create a new node N’ as a child of N
10.INSERT(N’,FRONTIER)

71

The goal test is applied
to a node when this node is
expanded, not when it is
generated.

Now, UCS is optimal!

34

Avoiding Revisited States
(Searching Graphs)

• Requires comparing state descriptions
• Breadth-first search:

– Store all states associated with generated
nodes in VISITED

– If the state of a new node is in VISITED, then
discard the node

Avoiding Revisited States

• Requires comparing state descriptions
• Breadth-first search:

– Store all states associated with generated
nodes in VISITED

– If the state of a new node is in VISITED, then
discard the node

Implemented as hash-table (e.g. python dictionary)
or as explicit data structure with flags

35

Explicit Data Structures

• Robot navigation
• VISITED: array initialized to 0, matching grid
• When grid position (x,y) is visited, mark

corresponding position in VISITED as 1
• Size of the entire state space!

Avoiding Revisited States in DFS

• Depth-first search:
– Solution 1:

• Store all states in current path in VISITED
• If the state of a new node is in VISITED, then discard the node

– Only avoids loops

– Solution 2:
• Store all generated states in VISITED
• If the state of a new node is in VISITED, then discard the node

– Same space complexity as breadth-first !

36

Avoiding Revisited States in
Uniform-Cost Search

• For any state S, when the first node N such that
STATE(N) = S is expanded, the path to N is the
best path from the initial state to S

• So:
– When a node is expanded, store its state into VISITED
– When a new node N is generated:

• If STATE(N) is in VISITED, discard N
• If there exits a node N’ in the frontier such that STATE(N’) =

STATE(N), discard the node -- N or N’ – w/highest cost

Search Algorithm #3
GRAPH-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. Add s to VISITED
7. If GOAL?(s) then return path or goal state
8. For every state s’ in SUCCESSORS(s)
9. Create a new node N’ as a child of N
10. If s’ is in VISITED then discard N’
11. If there is N’’ in FRONTIER with STATE(N’)=STATE(N’’)
12. If g(N’’) is lower than g(N’) then discard N’
13. Else discard N’’
14. INSERT(N’,FRONTIER)

37

Uninformed Search Summary

• Many variations on same basic algorithm

• Key differences:
– How frontier is implemented (FIFO, LIFO, priority queue)
– When goal test is applied
– Whether visited list is maintained

• Big impact on:
– Completeness
– Optimality
– Complexity

