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What is Search?

• Search is a basic problem-solving method
– We start in an initial state
– We examine states that are (usually) connected by a 

sequence of actions to the initial state

• Note:  Search is (usually) a thought experiment 
(separate topic:  Real Time Search)

• We aim to find a solution, which is a sequence of 
actions that brings us from the initial state to the 
goal state, possibly minimizing cost



2

Search vs. Web Search

• When we issue a search query using Google, does 
Google really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm to find the most “popular” 

web pages that are consistent with your query

Overview

• Problem Formulation

• Uninformed Search – constant cost
– DFS, BFS, IDDFS, etc.

• Non-constant cost
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Problem Formulation

• Components of a search problem
– State space & initial state
– Actions
– Goal Test
– Edge costs (constant or varying per edge?)

• Optimal solution = lowest path cost to goal

Example: Path Planning, e.g. 
Google Maps
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Other Search Problems

• Drug design
• Logistics

– Route planning
– Tour Planning

• Assembly sequencing
• Internet routing
• Robot motion/path planning

Robot Path Planning

What is the state space?
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Formulation #1

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = sqrt(2)

Optimal Solution

This path is the shortest in the discretized state 
space, but not in the original continuous space
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Formulation #2

Cost of one step: length of segment

Formulation #2

Cost of one step: length of segment

Visibility graph
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Solution Path

13

The shortest path in this state space is also the 
shortest in the original continuous space 

Take Home Points

• States = modeling choice about the world

• Trade offs often exist:
– Example 1: Discretization is easy to work with, but optimal 

solution to may be suboptimal in the real world
– Example 2: More clever representations may require ingenuity 

to discover, or use, but may have benefits in real world

• Always keep modeling and solving distinct in your head
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Basic Search Concepts
• Search tree: Internal representation of our progress
• Nodes: Places in search tree

(states exist in the problem space) 
• Actions: Connect states to next states (nodes to nodes)
• Expansion: Generation of next states (nodes)
• Arc cost: Cost of moving from one state to another
• Frontier: Set of nodes visited, but not expanded
• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d 

(root is depth 0, possibility of multiple goal states!)

Example: 8-Puzzle

1

2

3 4

5 6

7

8 1 2 3

4 5 6

7 8

Initial state Goal state

State: Arrangement of 8 numbered tiles & empty tile on a 3x3 board



9

15-Puzzle

• Introduced (?) in 1878 by Sam Loyd, who 
dubbed himself “America’s greatest puzzle-
expert”

17

15-Puzzle
• Sam Loyd offered $1,000 of his own 

money to the first person who would 
solve the following problem:
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How big is the state space of the 
(n2-1)-puzzle?

• 8-puzzle à 9! = 362,880 states
• 15-puzzle à 16! ~ 2.09 x 1013 states
• 24-puzzle à 25! ~ 1025 states

• But only half of these states are 
reachable from any given state
(but you may not know that in advance)

• No one ever won the prize !!
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Searching the State Space
• Often infeasible (or too expensive) to build 

complete representation of the state graph

• Key difference from algorithms class, where it is 
typically assumed that graph fits in memory

8-, 15-, 24-Puzzles
8-puzzle à 362,880 states

15-puzzle à 2.09 x 1013 states

24-puzzle à 1025 states

100 million states/sec

0.036 sec

~ 55 hours

> 109 years
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Intractability

• Constructing the full state graph is intractable 
for many interesting problems

• n-puzzle: (n+1)! states

Tractability of search hinges on the ability to 
explore only a tiny portion of the state graph!

Searching the State Space

Search tree
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Searching the State Space

Search tree

Searching the State Space

Search tree
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Searching the State Space

Search tree

Searching the State Space

Search tree
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Searching the State Space

Search tree

Search Nodes and States
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If states are allowed to be revisited,
the search tree may be infinite even

when the state space is finite
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Data Structure of a Node

PARENT-NODE
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STATE

Depth of a node N  
= length of path from root to N 

(depth of the root = 0)

BOOKKEEPING

5Path-Cost

5Depth
RightAction

Expanded yes
...

CHILDREN

Node expansion
• The expansion of a node N of the 

search tree consists of:
– Evaluating the successor function on 

STATE(N)
– Generating a child of N for each 

state returned by the function

• node generation ¹ node 
expansion
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Frontier of Search Tree
• The frontier is the set of all search nodes 

that haven’t been expanded yet 
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Search Strategy

• The frontier is the set of all search nodes 
that haven’t been expanded yet 

• Implemented as a priority queue FRONTIER
– INSERT(node, FRONTIER)
– REMOVE(FRONTIER)

• The ordering of the nodes in FRONTIER 
defines the search strategy
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Generic Tree Search

TREE-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node, FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. For every state s’ in SUCCESSORS(s)
8. Create a new node N’ as a child of N
9. If GOAL?(s’) then return path or goal state
10. INSERT(N’, FRONTIER)

Expansion of N

Solution to the Search Problem
§ A solution is a path 

connecting the initial 
node to a goal node 
(any goal)

§ The cost of a path is 
the sum of the arc 
costs along this path

§ An optimal solution 
is a solution path of 
minimum cost

§ There might be 
no solution !

S

G

Nota bene: Typically assume costs > 0
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Algorithm Performance Measures

• Completeness:
– Does it find a solution when one exists?

• Optimality:
– Does it return a min cost path whenever solution exists?

• Complexity (space or time):
– Resources required by the algorithm

38

Breadth-First Search

• FRONTIER is a FIFO Queue
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FRONTIER = (1)
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Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (2, 3)2 3

4 5

1

6 7

Breadth-First Search

• FRONTIER is a FIFO Queue

FRONTIER = (3, 4, 5)2 3

4 5
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6 7
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Breadth-First Search

• FRONTIER is a FIFO Queue

FRRONTIER = (4, 5, 6, 7)2 3

4 5

1

6 7

BFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

Y

(Y for constant cost, N for arbitrary cost)

O(bd+1)

O(bd)

Note: We are counting nodes generated in time complexity;
textbook may be counting nodes expanded.
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How bad is exponential in d?

d # Nodes Time Memory
2 111 .01 msec 11 Kbytes
4 11,111 1 msec 1 Mbyte
6 ~106 1 sec 100 Mb
8 ~108 100 sec 10 Gbytes
10 ~1010 2.8 hours 1 Tbyte
12 ~1012 11.6 days 100 Tbytes
14 ~1014 3.2 years 10,000 Tbytes

Assumptions: b = 10; 1,000,000 nodes/sec; 100bytes/node

Bi-directional Search

!!!!

€ 

bd /2 + bd /2 << bd

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif 
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Issues with Bi-directional Search

• Uniqueness of goal
– Suppose goal is parking your car
– Huge no. of possible goal states

(configurations of other vehicles)

• Invertability of actions

Depth-First Search

• FRONTIER is a LIFO Queue
1
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FRONTIER = (1)
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Depth-First Search

• FRONTIER is a LIFO Queue
1
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4 5

FRONTIER = (2, 3)

Depth-First Search

• FRONTIER is a LIFO Queue
1
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FRONTIER = (4, 5, 3)
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Depth-First Search

• FRONTIER is a LIFO Queue
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Depth-First Search

• FRONTIER is a LIFO Queue
1
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4 5
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Depth-First Search

• FRONTIER is a LIFO Queue
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Depth-First Search

• FRONTIER is a LIFO Queue
1
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4 5
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1
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4 5
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Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5

Depth-First Search

• FRONTIER is a LIFO Queue
1

2 3

4 5
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DFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

(Y for finite trees, N for infinite trees)

N

O(bm+1) (m = depth we hit, m>d?)

O(bm) (bounded for trees)

Iterative Deepening

• Want:
– DFS memory requirements
– BFS optimality, completeness

• Idea:
– Do a depth-limited DFS for depth m
– Iterate over m
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Iterative Deepening

Note: The IDDFS slides are animated, showing DFS running down to the red line on each slide. 

Iterative Deepening
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Iterative Deepening

IDDFS Properties

• Completeness:
• Optimality:
• Time complexity:
• Space complexity:

Y

(whenever BFS is optimal)

O(bd+2)

O(bd)
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Proof:  Assume the tree bottoms out at depth d, BFS generates:

In the worst case, IDDFS does no more than:
2d+1 −1
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IDDFS vs. BFS
Theorem:  IDDFS expands no more than twice as many nodes 
for a binary tree as BFS.

What about b-ary trees? IDDFS relative cost is lower!

Non-constant Costs

• Arcs between states can have variable costs

• The cost of the path to each node N is                   
g(N) = S costs of arcs

• Breadth-first is no longer optimal
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Uniform-Cost Search (UCS)
• Expand node in FRONTIER with the cheapest path so far, i.e., 

frontier is a priority queue prioritized on g(N)
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Suboptimal path!

(how to fix this?)

Search Algorithm #2
TREE-SEARCH2(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. If GOAL?(s) then return path or goal state
8. For every state s’ in SUCCESSORS(s)
9. Create a new node N’ as a child of N
10.INSERT(N’,FRONTIER)

71

The goal test is applied
to a node when this node is
expanded, not when it is
generated.

Now, UCS is optimal!
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Avoiding Revisited States
(Searching Graphs)

• Requires comparing state descriptions 
• Breadth-first search: 

– Store all states associated with generated
nodes in VISITED

– If the state of a new node is in VISITED, then 
discard the node

Avoiding Revisited States

• Requires comparing state descriptions 
• Breadth-first search: 

– Store all states associated with generated 
nodes in VISITED

– If the state of a new node is in VISITED, then 
discard the node

Implemented as hash-table (e.g. python dictionary) 
or as explicit data structure with flags
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Explicit Data Structures

• Robot navigation
• VISITED: array initialized to 0, matching grid
• When grid position (x,y) is visited, mark 

corresponding position in VISITED as 1
• Size of the entire state space!

Avoiding Revisited States in DFS

• Depth-first search: 
– Solution 1:

• Store all states in current path in VISITED
• If the state of a new node is in VISITED, then discard the node

– Only avoids loops

– Solution 2:
• Store all generated states in VISITED
• If the state of a new node is in VISITED, then discard the node

– Same space complexity as breadth-first !
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Avoiding Revisited States in 
Uniform-Cost Search

• For any state S, when the first node N such that 
STATE(N) = S is expanded, the path to N is the 
best path from the initial state to S

• So:
– When a node is expanded, store its state into VISITED
– When a new node N is generated:

• If STATE(N) is in VISITED, discard N
• If there exits a node N’ in the frontier such that STATE(N’) = 

STATE(N), discard the node -- N or N’ – w/highest cost

Search Algorithm #3
GRAPH-SEARCH(initial-state)
1. If GOAL?(initial-state) then return initial-state
2. INSERT(initial-node,FRONTIER)
3. Repeat:
4. If empty(FRONTIER) then return failure
5. N ß REMOVE(FRONTIER)
6. s ß STATE(N)
7. Add s to VISITED
7. If GOAL?(s) then return path or goal state
8. For every state s’ in SUCCESSORS(s)
9. Create a new node N’ as a child of N
10. If s’ is in VISITED then discard N’
11. If there is N’’ in FRONTIER with STATE(N’)=STATE(N’’)
12. If g(N’’) is lower than g(N’) then discard N’ 
13. Else discard N’’
14. INSERT(N’,FRONTIER)
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Uninformed Search Summary

• Many variations on same basic algorithm

• Key differences:
– How frontier is implemented (FIFO, LIFO, priority queue)
– When goal test is applied
– Whether visited list is maintained

• Big impact on:
– Completeness
– Optimality
– Complexity


