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Bayesian Networks

CompSci 370
Duke University

Ron Parr

Why Joint Distributions are Important
(Contrast with Pure Prediction)

• Joint distribu6ons gives P(X1…Xn)

• Classifica6on/Diagnosis
– Suppose X1=disease
– X2…Xn = symptoms (naturally handles missing data)

• Co-occurrence
– Suppose X3=lung cancer
– X5=smoking

• Rare event Detec6on
– Suppose X1…Xn = parameters of a credit card transac<on
– Call card holder if P(X1…Xn) is below threshold?
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Modeling Joint Distributions
• To do this correctly, we need a full assignment of probabilities to all 

atomic events

• Unwieldy in general for discrete variables:  n binary variables = 2n

atomic events

• Independence makes this tractable, but too strong (rarely holds)

• Conditional independence is a good compromise:  Weaker than 
independence, but still has great potential to simplify things

Overview

• Conditional independence
• Bayesian networks
• Variable Elimination
• Sampling
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Conditional Independence

• Suppose we know the following:
– The flu causes sinus inflammation
– Allergies cause sinus inflammation
– Sinus inflammation causes a runny nose
– Sinus inflammation causes headaches

• How are these connected?

Example 1: Simple graphical structure

Flu Allergy

Sinus

Headache Nose

Knowing sinus separates the variables from each other.
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Example 2: Naïve Bayes Spam Filter

…

S

W1 W2 Wn

P(S)

P(W1|S) P(Wn|S)

We will see later why this is a particularly convenient representation.
(Does it make a correct assumption?)

Source: http://www.todayifoundout.com/index.php/2010/09/how-the-word-spam-came-to-mean-junk-message/

Conditional Independence

• We say that two variables, A and B, are conditionally 
independent given C if:
– P(A|BC) = P(A|C)
– P(AB|C) = P(A|C)P(B|C)

• How does this help?

• We store only a conditional probability table (CPT) of each 
variable given its parents

• Naïve Bayes (e.g. Spam Assassin) is a special case of this!



5

Notation Reminder

• P(A|B) is a conditional prob. distribution
– It is a function!
– P(A=true|B=true), P(A=true|B=false), 

P(A=false|B=True), P(A=false|B=true)
• P(A|b) is a probability distribution, function
• P(a|B) is a function, not a distribution
• P(a|b) is a number

What is Bayes Net?

• A directed acyclic graph (DAG)
• Each variable is 

conditionally independent of non-descendants, 
given parents

• Joint probability decomposes:

• For each node Xi, store P(Xi|parents(Xi))
• Call this a Conditional Probability Table (CPT)
• CPT size is exponential in number of parents

!!!!

€ 

P(x1 ...xn) = P(xi |parents(xi))
i
∏



6

Real Applications of Bayes Nets

• Diagnosis of lymph node disease

• Used by robots to identify meteorites to study

• Study the human genome: Alex Hartemink et al.

• Used in MS Windows

• Many other applications…

See, e.g., https://www.nature.com/articles/s41598-018-24758-5 

Space Efficiency

• Entire joint distribution as 32 (31) entries
– P(H|S),P(N|S) have 4 (2)
– P(S|AF) has 8 (4)
– P(A), P(F) have 2 (1)
– Total is 20 (10)

• This can require exponentially less space
• Space problem is solved for “most” problems

Flu Allergy

Sinus

Headache Nose
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Naïve Bayes Space Efficiency

…

S

W1 W2 Wn

P(S)

P(W1|S) P(Wn|S)

Entire Joint distribution has 2n+1 (2n+1-1) numbers vs. 4n+2 (2n+1) 

(Non)Uniqueness of Bayes Nets I

• Suppose you have two variables that are NOT independent
• Two possible networks:

– A is parent of B
– B is parent of A

• Which is right?
• There is no wrong answer!
• Each network can express arbitrary P(AB)
• Network does NOT encode causal or temporal dynamics
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(Non)Uniqueness of Bayes Nets II

• Can construct valid Bayes net by adding variables 
incrementally

• For each new variable, connect all influencing variables as 
parents – new variables never become parents of existing 
variables (how does this ensure that all variables are 
conditionally independent of non-descendents given parents?)

• Different order can lead to different Bayesian networks for the 
same distribution

Suppose A and B are uniform, C=(A ∨ B)

A B C P
0 0 0 0.25
0 0 1 0
0 1 0 0
0 1 1 0.25
1 0 0 0
1 0 1 0.25
1 1 0 0
1 1 1 0.25

A B

C

P(a)=P(a̅)=P(b)=P(bd)=0.5
P(c)=0.75,P(c)̅=0.25
P(ab)=P(abd)=P(a̅b)=P(a̅bd)=0.25
P(c|ab)=P(c|abd)=P(c|a̅b)=1.0, P(c|a̅bd)=0

P(A) P(B)

P(C|AB)

Add A, then B, 
then C case

(only showing c=true case)
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Suppose A and B are uniform, C=(A ∨ B)

A B C P
0 0 0 0.25
0 0 1 0
0 1 0 0
0 1 1 0.25
1 0 0 0
1 0 1 0.25
1 1 0 0
1 1 1 0.25

A

B

C

P(c)=0.75,P(c)̅=0.25
P(ac)=0.5, P(ac)̅=0, P(a̅c)=P(a̅c)̅=0.25
P(a|c)=2/3, P(a̅|c)=1/3, P(a|c)̅= 0, P(a̅|c̅ )=1
P(b|ac)=1/2, P(b|ac)̅=P(b|a̅c)̅=0, P(b|a̅c)=1

Add C, then A, 
then B case

(only showing b=true case)

Atomic Event Probabilities

!!!!

€ 

P(x1 ...xn) = P(xi |parents(xi))
i
∏

Flu Allergy

Sinus

Headache Nose

Note that this is guaranteed true if we construct net incrementally,
so that for each new variable added, we connect all influencing
variables as parents (prove it by induction)
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Answering Queries Using 
Marginalization

P( f|h)= P( fh)
P(h)

=

P( fhSAN)
SAN
∑

P(hSANF)
SANF
∑

=

P( f )P(A)P(S|Af )P(h|S)P(N|S)
SAN
∑

P(F)P(A)P(S|AF)P(h|S)P(N|S)
SANF
∑

Doing this naïvely, we need to sum over all atomic events defined
over these variables.  There are exponentially many of these.

defn. of condi6onal probability !!

€ 

P(hSANF) = p(x | parents(x))
x
∏

= P(h | S)P(N | S)P(S | AF)P(A)P(F)

Working Smarter
Flu Allergy

Sinus

Headache Nose

!!

€ 

P(h) = P(hSANF)
SANF
∑

= P(h | S)P(N | S)P(S | AF)P(A)P(F)
SANF
∑

= P(h | S)P(N | S)
NS
∑ P(S | AF)P(A)P(F)

AF
∑

= P(h | S)
S
∑ P(N | S)

N
∑ P(S | AF)P(A)P(F)

AF
∑

Potential for exponential reduction in computation.
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Understanding NotaPon
Flu Allergy

Sinus

Headache Nose

!!

€ 

P(h) = P(hSANF)
SANF
∑

= P(h | S)P(N | S)P(S | AF)P(A)P(F)
SANF
∑

= P(h | S)P(N | S)
NS
∑ P(S | AF)P(A)P(F)

AF
∑

= P(h | S)
S
∑ P(N | S)

N
∑ P(S | AF)P(A)P(F)

AF
∑

8 combinations 3 binary variables
2 variables summed out
Result is a function of S

Understanding NotaPon
Flu Allergy

Sinus

Headache Nose

!!

€ 

P(h) = P(hSANF)
SANF
∑

= P(h | S)P(N | S)P(S | AF)P(A)P(F)
SANF
∑

= P(h | S)P(N | S)
NS
∑ P(S | AF)P(A)P(F)

AF
∑

= P(h | S)
S
∑ P(N | S)

N
∑ P(S | AF)P(A)P(F)

AF
∑

4 combinations 2 binary variables
1 variable summed out
Result is a function of S
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Understanding NotaPon
Flu Allergy

Sinus

Headache Nose

!!

€ 

P(h) = P(hSANF)
SANF
∑

= P(h | S)P(N | S)P(S | AF)P(A)P(F)
SANF
∑

= P(h | S)P(N | S)
NS
∑ P(S | AF)P(A)P(F)

AF
∑

= P(h | S)
S
∑ P(N | S)

N
∑ P(S | AF)P(A)P(F)

AF
∑

2 combinations of 1 binary variable
1 variable summed out
Result is a number

Computational Efficiency

!!

€ 

P(hSANF)
SANF
∑ = P(h | S)P(N | S)P(S | AF)P(A)P(F)

SANF
∑

= P(h | S) P(N | S)
N
∑ P(S | AF)P(A)P(F)

AF
∑

S
∑

Poten&al for an exponen6al reduc6on in computa6on costs.

The distribu6ve law allows us to decompose the sum.
AKA:  Variable elimina6on, sum-product algorithm, etc.
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Naïve Bayes Efficiency

…

S

W1 W2 Wn

P(S)

P(W1|S) P(Wn|S)

Given a set of words, we want to know which is larger:  P(s|W1…Wn)
or P(¬s|W1…Wn).

Use Bayes Rule:
!!!!

€ 

P(S |W1...Wn) =
P(W1 ...Wn | S)P(S)

P(W1 ...Wn)

Naïve Bayes Efficiency II

…

S

W1 W2 Wn

P(S)

P(W1|S)

Observation 1:  We can ignore P(W1…Wn)
Observation 2: P(S) is given
Observation 3: P(W1…Wn|S) is easy:

!!!!

€ 

P(S |W1...Wn) =
P(W1 ...Wn | S)P(S)

P(W1 ...Wn)

!!!!

€ 

P(W1...Wn | S) = P(Wi | S)
i=1

n

∏

Note:  Can also do variable elimination by summing out leaves first.
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Checkpoint

• BNs can give us an exponen\al reduc\on in the space 
required to represent a joint distribu\on.

• Storage is exponen\al in largest parent set.

• Claim:  Parent sets are o_en reasonable.

• Claim:  Inference cost is o_en reasonable.

• Ques\on:  Can we quan\fy rela\onship between 
structure and inference cost?

Now the Bad News…

• In full generality:  Inference is NP-hard
• Decision problem:  Is P(X)>0?
• We reduce from 3SAT
• 3SAT variables map to BN variables
• Clauses become variables with the 

corresponding SAT variables as parents

(NP-hardness result not covered in lecture but included
in slides for those who are interested.)
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Reduction

!!!!

€ 

(X!1 ∨ X2 ∨ X3 )∧ (X!2 ∨ X3 ∨ X4)∧ ...

X1

X2

X3

X4

C1

C2

Problem:  What if we have
a large number of clauses?
How does this fit into our
decision problem framework?

And Trees
We could make a single variable which is the AND of all
of our clauses, but this would have CPT that is exponential
in the number of clauses.

X1

X2

X3

X4

C1

C2

A1

A2

A3

Implement as
a tree of ANDs.
This is polynomial.
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Checkpoint

• BNs can be very compact
• Worst case: Inference is intractable

• Hope that worst is case:
– Avoidable (frequently, but no free lunch)
– Easily characterized in some way

Clues in the Graphical Structure

• Q:  How does graphical structure relate to our ability 
to push in summations over variables?

• A:
– We relate summations to graph operations
– Summing out a variable =

• Removing node(s) from DAG
• Creating new replacement node

– Relate graph properties to computational efficiency
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Variable Elimination as Graph Operations

We can think of summing out a variable as crea6ng a new
“super variable” which contains all of that variable’s neighbors

Another Example Network

Cloudy

Sprinkler Rain

W. Grass

!!!!

€ 

P(c) = 0.5

!!!!

€ 

P(r | c) = 0.8
P(r | c!) = 0.2!!!!

€ 

P(s | c) = 0.1
P(s | c!) = 0.5

!!!!

€ 

P(w | sr) = 0.99
P(w | sr!) = 0.9
P(w | s!r) = 0.9
P(w | s!r!) = 0.0
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Marginal Probabilities

Suppose we want P(W):

!!

€ 

P(W) = P(
CSR

∑ CSRW )

= P(
CSR

∑ C)P(S |C)P(R |C)P(W |RS)

= P(W |RS) P(S |C)P(C)P(R |C)
C

∑
SR

∑

EliminaPng Cloudy

Cloudy

Sprinkler Rain

W. Grass

P(C)=0.5

!!

€ 

P(W) = P(
CSR

∑ CSRW )

= P(
CSR

∑ C)P(S |C)P(R |C)P(W |RS)

= P(W |RS) P(S |C)P(C)P(R |C)
C

∑
SR

∑

Sprinkler Rain

W. Grass

!!!!

€ 

P(sr) = 0.5*0.1*0.8+ 0.5*0.5*0.2 = 0.09
P(sr!) = 0.5*0.1*0.2+ 0.5*0.5*0.8 = 0.21
P(s!r) = 0.5*0.9*0.8+ 0.5*0.5*0.2 = 0.41
P(s!r!) = 0.5*0.9*0.2+ 0.5*0.5*0.8 = 0.29

!!!!

€ 

P(S |C) = 0.1
P(S |C!) = 0.5 !!!!

€ 

P(R |C) = 0.8
P(R |C!) = 0.2
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Eliminating Sprinkler/Rain
Sprinkler Rain

W. Grass

!!!!

€ 

P(w) = P(w |RS)P(RS)
SR

∑
= 0.09*0.99+ 0.21*0.9+ 0.41*0.9+ 0.29*0
= 0.6471

!!!!

€ 

P(sr) = 0.09
P(sr!) = 0.21
P(s!r) = 0.41
P(s!r!) = 0.29

!!!!

€ 

P(w | sr) = 0.99
P(w | sr!) = 0.9
P(w | s!r) = 0.9
P(w | s!r!) = 0.0

Dealing With Evidence
Suppose we have observed that the grass is wet?
What is the probability that it has rained?

!!

€ 

P(R |W) = αP(RW)

= α P(
CS

∑ CSRW )

= α P(
CS

∑ C)P(S |C)P(R |C)P(W |RS)

= α P(R |C)P(C) P(S |C)P(W |RS)
S
∑

C
∑

Is there a more clever way to deal with w?
Only keep the relevant parts.
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Efficiency of Variable Elimination

• Exponential in the largest domain size of new 
variables created 

• Equivalently: Exponential in largest function 
created by pushing in summations (sum-product 
algorithm)

• Linear for trees (DAGs in which undirected 
structure is a tree)

• Almost linear for almost trees J

Naïve Bayes Efficiency

…

S

W1 W2 Wn

P(S)

P(W1|S) P(Wn|S)

Another way to understand why Naïve Bayes is efficient:
It’s a tree!



21

Facts About Variable EliminaPon

• Picking variables in op\mal order is NP hard
• For some networks, there will be no elimina\on 

ordering that results in a poly \me solu\on
(Must be the case unless P=NP)

• Polynomial for trees
• Need to get a li`le fancier if there are a large 

number of query variables or evidence variables

Beyond Variable EliminaPon

• Variable elimination must be rerun for every new query
• Possible to compile a Bayes net into a new data structure to make 

repeated queries more efficient
– Recall that inference in trees is linear
– Define a “cluster tree” where

• Clusters = sets of original variables
• Can infer original probs from cluster probs

• For networks w/o good elimination schemes
– Sampling (discussed briefly)
– Cutsets (not covered in this class)
– Variational methods (not covered in this class)
– Loopy belief propagation (not covered in this class)
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Sampling

• A Bayes net is an example of a generative 
model of a probability distribution

• Generative models allow one to generate 
samples from a distribution in a natural way

• Sampling algorithm:
– While some variables are not sampled

• Pick variable x with no unsampled parents
• Assign this variable a value from p(x|parents(x))

– Do this n times
– Compute P(a) by counting in what fraction a is true

Sampling Example

• Suppose you want to compute P(H)
• Start with the parentless nodes:

Flu Allergy

Sinus

Headache Nose

Flip a coin
to decide F
based on P(F)
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Flu Allergy

Sinus

Headache Nose

F=true
Flu Allergy

Sinus

Headache Nose

F=true Flip a coin
to decide A
based on P(A)

Flu Allergy

Sinus

Headache Nose

F=true A=false
Flu Allergy

Sinus

Headache Nose

F=true A=false

Flip a coin
to decide S
based on
P(S|fa̅)

Flu Allergy

Sinus

Headache Nose

F=true A=false

S=true

Flu Allergy

Sinus

Headache Nose

F=true A=false

S=true
Flip a coin
to decide H
based on
P(H|s)

Flu Allergy

Sinus

Headache Nose

F=true A=false

S=true
No need to
sample N for
this queryH=true

This now becomes
a single sample for
H. Need to repeat
entire process man
times to estimate P(H)!
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Sampling with Observed Evidence

• Suppose you know H=true
• Want to know P(F|h)?
• How can we use sampling?

Flu Allergy

Sinus

Headache Nose

F=true A=false

S=true

H=true

Count fraction of times
F is true/false when H is
also true

But what if we flip a coin
For H and it turns out false?

Comments on Sampling
• Sampling is the easiest algorithm to implement
• Can compute marginal or conditional distributions by counting
• Not efficient in general

• Problem:  How do we handle observed values?
– Rejection sampling:  Quit and start over when mismatches occur
– Importance sampling:  Use a reweighting trick to compensate for mismatches
– Low probability events are still a problem (low importance weights mean that you 

need many samples to get a good estimate of probability)

• Much more clever approaches to sampling are possible, though mismatch 
between sampling (proposal) distribution and reality is a constant concern
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Bayes Net Summary
• Bayes net = data structure for joint distribu\on
• Can give exponen\al reduc\on in storage
• Variable elimina\on and variants for tree-ish networks:

– simple, elegant methods
– efficient for many networks

• For some networks, must use approxima\on

• BNs are a major success story for modern AI
– BNs do the “right” thing (no ugly approxima<ons)
– Exploit structure in problem to reduce storage/computa<on
– Not always efficient, but inefficient cases are well understood
– Work and used in prac<ce


