

Why Joint Distributions are Important (Contrast with Pure Prediction)

- Joint distributions gives P(X₁...X_n)
- Classification/Diagnosis
 - Suppose X₁=disease
 - X₂...X_n = symptoms (naturally handles missing data)
- Co-occurrence
 - Suppose X₃=lung cancer
 - X_5 =smoking
- Rare event Detection
 - Suppose $X_1...X_n$ = parameters of a credit card transaction
 - Call card holder if $P(X_1...X_n)$ is below threshold?

Modeling Joint Distributions

- To do this correctly, we need a full assignment of probabilities to all atomic events
- Unwieldy in general for discrete variables: n binary variables = 2ⁿ atomic events
- Independence makes this tractable, but too strong (rarely holds)
- Conditional independence is a good compromise: Weaker than independence, but still has great potential to simplify things

Notation Reminder P(A|B) is a conditional prob. distribution It is a function! P(A=true|B=true), P(A=true|B=false), P(A=false|B=True), P(A=false|B=true) P(A|b) is a probability distribution, function P(a|B) is a function, not a distribution P(a|b) is a number

• CPT size is exponential in number of parents

A	В	С	Р		
0	0	0	0.25	P(A)	P(B)
0	0	1	0	\frown	\frown
0	1	0	0	(A)	(в
0	1	1	0.25	\sim	\searrow
1	0	0	0		
1	0	1	0.25	P(C AB)	×
1	1	0	0	(c)
1	1	1	0.25		
P(a P(o P(a P(o	a)=P(ā)=P(b) c)=0.75,P(c)= ab)=P(ab)=P c ab)=P(c al	=P(b)=0.5 =0.25 (āb)=P(āb)=C 5)=P(c āb)=1).25 0, P(c āb)=0	Add A, tl then C c	hen B, ase

Checkpoint

- BNs can give us an exponential reduction in the space required to represent a joint distribution.
- Storage is exponential in largest parent set.
- Claim: Parent sets are often reasonable.
- Claim: Inference cost is often reasonable.
- Question: Can we quantify relationship between structure and inference cost?

Checkpoint

- BNs can be very compact
- Worst case: Inference is intractable
- Hope that worst is case:
 - Avoidable (frequently, but no free lunch)
 - Easily characterized in some way

Facts About Variable Elimination

- Picking variables in optimal order is NP hard
- For some networks, there will be no elimination ordering that results in a poly time solution (Must be the case unless P=NP)
- Polynomial for trees
- Need to get a little fancier if there are a large number of query variables or evidence variables

Bayes Net Summary

- Bayes net = data structure for joint distribution
- Can give exponential reduction in storage
- Variable elimination and variants for tree-ish networks:
 - simple, elegant methods
 - efficient for many networks
- For some networks, must use approximation
- BNs are a major success story for modern AI
 - BNs do the "right" thing (no ugly approximations)
 - Exploit structure in problem to reduce storage/computation
 - Not always efficient, but inefficient cases are well understood
 - Work and used in practice