Markov Decision Processes (MDPs)

Ron Parr
CompSci 370
Department of Computer Science
Duke University

The Winding Path to Reinforcement Learning

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

Playing a Game Show

- Assume series of questions
- Increasing difficulty
- Increasing payoff
- Choice:
- Accept accumulated earnings and quit
- Continue and risk losing everything
- "Who wants to be a millionaire?"

State Representation

Making Optimal Decisions

- Work backwards from future to present
- Consider \$50,000 question
- Suppose P (correct) $=1 / 10$
- V(stop)=\$11,100
$-\mathrm{V}($ continue $)=0.9 * \$ 0+0.1^{*} \$ 61.1 \mathrm{~K}=\$ 6.11 \mathrm{~K}$
- Optimal decision stops

Working Backwards

$V=\$ 3,749 \quad V=\$ 4,166 \quad V=\$ 5,555 \quad V=\$ 11.1 K$

Red X indicates bad choice

Dealing with Loops

Suppose you can pay $\$ 1000$ (from any losing state) to play again

From Policies to Linear Systems

- Suppose we always pay until we win.
- What is value of following this policy?

$$
\begin{aligned}
& V\left(s_{0}\right)=0.10\left(-1000+V\left(s_{0}\right)\right)+0.90 V\left(s_{1}\right) \\
& V\left(s_{1}\right)=0.25\left(-1000+V\left(s_{0}\right)\right)+0.75 V\left(s_{2}\right) \\
& V\left(s_{2}\right)=\underbrace{0.50\left(-1000+V\left(s_{0}\right)\right)}_{\text {Return to Start }}+\underbrace{0.50 V\left(s_{3}\right)}_{\text {Continue }} \\
& V\left(s_{3}\right)=\underbrace{0.90\left(-1000+V\left(s_{0}\right)\right)}+\underbrace{0.10(61100)}
\end{aligned}
$$

And the solution is...

Is this optimal?
How do we find the optimal policy?

The MDP Framework

- State space: S
- Action space: A
- Transition function: P
- Reward function: R(s,a, s') or R(s,a) or R(s)
- Discount factor: γ
- Policy: $\pi(s) \rightarrow a$

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)

Applications of MDPs

- AI/Computer Science
- Robotic control (Koenig \& Simmons, Thrun et al., Kaelbling et al.)
- Air Campaign Planning (Meuleau et al.)
- Elevator Control (Barto \& Crites)
- Computation Scheduling (Zilberstein et al.)
- Control and Automation (Moore et al.)
- Spoken dialogue management (Singh et al.)
- Cellular channel allocation (Singh \& Bertsekas)

Applications of MDPs

- Economics/Operations Research
- Fleet maintenance (Howard, Rust)
- Road maintenance (Golabi et al.)
- Packet Retransmission (Feinberg et al.)
- Nuclear plant management (Rothwell \& Rust)
- Debt collection strategies (Abe et al.)
- Data center management (DeepMind)

Applications of MDPs

- EE/Control
- Missile defense (Bertsekas et al.)
- Inventory management (Van Roy et al.)
- Football play selection (Patek \& Bertsekas)
- Agriculture
- Herd management (Kristensen, Toft)
- Other
- Sports strategies
- Board games
- Video games

The Markov Assumption

- Let S_{t} be a random variable for the state at time t
- $P\left(S_{t} \mid A_{t-1} S_{t-1}, \ldots, A_{0} S_{0}\right)=P\left(S_{t} \mid A_{t-1} S_{t-1}\right)$
- Markov is special kind of conditional independence
- Future is independent of past given current state, action

Understanding Discounting

- Mathematical motivation
- Keeps values bounded
- What if I promise you \$0.01 every day you visit me?
- Economic motivation
- Discount comes from inflation
- Promise of $\$ 1.00$ in future is worth $\$ 0.99$ today
- Probability of dying (losing the game)
- Suppose ε probability of dying at each decision interval
- Transition w/prob ε to state with value 0
- Equivalent to 1- ε discount factor

Discounting in Practice

- Often chosen unrealistically low
- Faster convergence of the algorithms we'll see later
- Leads to slightly myopic policies
- Can reformulate most algs. for avg. reward
- Mathematically uglier
- Somewhat slower run time

Value Determination

Determine the value of each state under policy π

$$
V^{\pi}(s)=R(s, \pi(s))+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, \pi(s)\right) V^{\pi}\left(s^{\prime}\right)
$$

Bellman Equation for a fixed policy π

$$
V^{\pi}\left(s_{1}\right)=1+\gamma\left(0.4 V^{\pi}\left(s_{2}\right)+0.6 V^{\pi}\left(s_{3}\right)\right)
$$

Matrix Form

$$
\mathbf{P}^{\pi}=\left(\begin{array}{lll}
P\left(s_{1} \mid s_{1}, \pi\left(s_{1}\right)\right) & P\left(s_{2} \mid s_{1}, \pi\left(s_{1}\right)\right) & P\left(s_{3} \mid s_{1}, \pi\left(s_{1}\right)\right) \\
P\left(s_{1} \mid s_{2}, \pi\left(s_{2}\right)\right) & P\left(s_{2} \mid s_{2}, \pi\left(s_{2}\right)\right) & P\left(s_{3} \mid s_{2}, \pi\left(s_{2}\right)\right) \\
P\left(s_{1} \mid s_{3}, \pi\left(s_{3}\right)\right) & P\left(s_{2} \mid s_{3}, \pi\left(s_{3}\right)\right) & P\left(s_{3} \mid s_{3}, \pi\left(s_{3}\right)\right)
\end{array}\right)
$$

$$
\mathbf{V}^{\pi}=\gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi}+\mathbf{R}^{\pi}
$$

This is a generalization of the game show example from earlier
How do we solve this system efficient? Does it even have a solution?

Solving for Values

$$
\mathbf{V}^{\pi}=\gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi}+\mathbf{R}^{\pi}
$$

For moderate numbers of states we can solve this system exacty:

$$
\mathbf{V}^{\pi}=\underbrace{\left(\mathbf{I}-\not-\mathbf{P}^{\pi}\right)^{-1}} \mathbf{R}^{\pi}
$$

Guaranteed invertible because $\gamma \mathbf{P}^{\pi}$ has spectral radius <1

Iteratively Solving for Values

$$
\mathbf{V}^{\pi}=\gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi}+\mathbf{R}^{\pi}
$$

For larger numbers of states we can solve this system indirectly:

$$
\mathbf{V}_{i+1}^{\pi}=\gamma \mathbf{P}^{\pi} \mathbf{V}_{i}^{\pi}+\mathbf{R}^{\pi}
$$

Guaranteed convergent because $\gamma \mathbf{P}_{\pi}$ has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
- Assume all values start pessimistic
- One value must always increase
- Can never overestimate
- Easy to prove
- Contraction analysis...

Contraction Analysis

- Define maximum norm

$$
\|V\|_{\infty}=\max _{i}|V[i]|
$$

- Consider two value functions V^{a} and V^{b} each at iteration 1:

$$
\left\|V_{1}^{a}-V_{1}^{b}\right\|_{\infty}=\varepsilon
$$

- WLOG say

$$
V_{1}^{a} \leq V_{1}^{b}+\vec{\varepsilon} \quad\left(\text { Vector of all } \varepsilon^{\prime} \mathrm{s}\right)
$$

Contraction Analysis Contd.

- At next iteration for V^{b} :

$$
V_{2}^{b}=R+\gamma P V_{1}^{b}
$$

- For V^{a}
$V_{2}^{a}=R+\gamma P\left(V_{1}^{a}\right) \leq R+\gamma P\left(V_{1}^{b}+\vec{\varepsilon}\right)=R+\gamma P V_{1}^{b}+\gamma P \vec{\varepsilon}=R+\gamma P V_{1}^{b}+\gamma \vec{\varepsilon}$
- Conclude:

$$
\left\|V_{2}^{a}-V_{2}^{b}\right\|_{\infty} \leq \gamma \varepsilon
$$

Importance of Contraction

- Any two value functions get closer
- True value function V^{*} is a fixed point (value doesn't change with iteration)
- Max norm distance from V^{*} decreases dramatically quickly with iterations

$$
\left\|V_{0}-V^{*}\right\|_{\infty}=\varepsilon \rightarrow\left\|V_{n}-V^{*}\right\|_{\infty} \leq \gamma^{n} \varepsilon
$$

Finding Good Policies
Suppose an expert told you the "true value" of each state:

Action 1

Action 2

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

$$
V^{*}(s)=\max _{a} R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V^{*}\left(s^{\prime}\right)
$$

Decision theoretic optimal choice given V^{*}
If we know V^{*}, picking the optimal action is easy
If we know the optimal actions, computing V^{*} is easy
How do we compute both at the same time?

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$
V_{i+1}(s)=\max _{a} R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V_{i}\left(s^{\prime}\right)
$$

- Called value iteration or simply successive approximation
- Same as value determination, but we can change actions
- Convergence:
- Can't do eigenvalue analysis (not linear)
- Still monotonic
- Still a contraction in max norm (exercise)
- Converges quickly

Robot Navigation Example

- The robot (shown \triangle) lives in a world described by a 4×3 grid of squares with square $(2,2)$ occupied by an obstacle
- A state is defined by the square in which the robot is located: $(1,1)$ in the above figure
$\rightarrow 11$ states

Action (Transition) Model

U brings the robot to:

- $(1,2)$ with probability 0.8
- $(2,1)$ with probability 0.1
- $(1,1)$ with probability 0.1
- In each state, the robot's possible actions are $\{U, D, R, L\}$
- For each action:
- With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
- With probability 0.1 it moves in a direction perpendicular to the intended one
- If the robot can't move, it stays in the same square
[This model satisfies the Markov condition]

Action (Transition) Model

L brings the robot to:

- $(1,1)$ with probability $0.8+0.1=0.9$
- $(1,2)$ with probability 0.1
- In each state, the robot's possible actions are $\{U, D, R, L\}$
- For each action:
- With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
- With probability 0.1 it moves in a direction perpendicular to the intended one
- If the robot can't move, it stays in the same square
[This model satisfies the Markov condition]

Terminal States, Rewards, and Costs

- Two terminal states: $(4,2)$ and $(4,3)$
- Rewards:
"terminal" states Not part of formal MDP specification. Usually handled by forcing state to have a fixed value, e.g. +1
- $R(4,3)=+1$ [The robot finds gold]
- $R(4,2)=-1$ [The robot gets trapped in quicksand]
- $R(s)=-0.04$ in all other states
- This example (from the Russell \& Norvig text) assumes no discounting ($\gamma=1$)
- Discussion: Is this a good modeling decision?

(Stationary) Policy

- A stationary policy is a complete map π : state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- Under the Markov and infinite horizon assumptions, the optimal policy π^{*} is necessarily a stationary policy
[The best action in a state does not depends on the past]

(Stationary) Policy

- A stationary policy is a complete map π : state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the The optimal policy tries to avoid
- Under the M "dangerous" state $(3,2)$ necessarily a stationary policy
[The best action in a state does not depends on the past]

Optimal Policies for Various R(s)

$R(s)=-0.04$

$R(s)=-0.01$

$R(s)=-2$

$R(s)>0$

Bellman Equation

[Bellman equation]

- $\pi^{*}(s)=\arg \max _{a \in \operatorname{Appl}(s)} \sum_{s^{\prime} \in S u c c(s, a)} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)$

1. Initialize the utility of each non-terminal states to $\mathrm{V}_{0}(\mathrm{~s})=0$
2. For $t=0,1,2, \ldots$ do

$$
V_{t+1}(s)=R(s)+\max _{a \in \operatorname{Appl}(s)} \sum_{s^{\prime} \in S u c c(s, a)} P\left(s^{\prime} \mid s, a\right) V_{t}\left(s^{\prime}\right)
$$

for each non-terminal state s

State Utilities/Values

- The utility of a state s is the maximal expected amount of reward that the robot will collect from s and future states by executing some action in each encountered state, until it reaches a terminal state (infinite horizon)
- Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached
[It only depends on the possible sequences of states after s, not on the possible sequences before s]

Convergence of Value Iteration

Properties of Value Iteration

- VI converges to V^{*} ($\|.\|_{\infty}$ from V^{*} shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V^{*}, optimal policy is argmax)
- Optimal policy is stationary (i.e. Markovian - depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it's better to change actions the second time you visit a state. Why didn't you just take the best action the first time?)

Policy Iteration

Greedy Policy Construction

Let's name the action that looks best WRT V:

$$
\pi_{v}(s)=\arg \max _{a} R(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)
$$

Expectation over next-state values

$$
\pi_{v}=\operatorname{greedy}(V)
$$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_{\mathrm{v}}=\pi_{0}$
$\mathrm{V}_{\pi}=$ value of acting on π (solve linear system)
$\pi_{v} \leftarrow$ greedy $\left(\mathrm{V}_{\pi}\right)$

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

- VI
- Value changes at every step
- Policy may change before exact value of policy is computed
- Many relatively cheap iterations
- PI
- Alternates policy/value updates
- Solves for value of each policy exactly
- Fewer, slower iterations (need to invert matrix)
- Convergence
- Both are contractions in max norm
- PI is shockingly fast (small number of iterations) in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ (we didn't prove this for Pl in class)
- VI costs less per iteration
- For n states, a actions PI tends to take $\mathrm{O}(\mathrm{n})$ iterations in practice
- Recent results indicate ${ }^{\sim} O\left(n^{2} a / 1-\gamma\right)$ worst case
- Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

A Unified View of Value Iteration and Policy Iteration

Notation

- Update for for a fixed policy - definition of T^{π} operator (matrix-vector form):

$$
T^{\pi} V \equiv R_{\pi}+\gamma P^{\pi} V
$$

- Update with policy improvement definition of the T operator:

$$
T V(s)=\max _{a} r(s, a)+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)
$$

Value Determination

- For 0 steps $\quad V_{0}=R^{\pi}$
- For i steps $\quad V_{i}=T^{\pi} V_{i-1}=\left(T^{\pi}\right)^{i} R^{\pi}$
- Infinite horizon $\lim _{i \rightarrow \infty} V_{i}=\left(T^{\pi}\right)^{\infty} R^{\pi}=\left(1-\gamma P^{\pi}\right)^{-1} R^{\pi}=V^{\pi}$

Value Iteration

- For 0 steps $\quad V_{0}=R \quad \begin{aligned} & \text { (If R depends on a, pick a with } \\ & \text { the highest immediate reward) }\end{aligned}$
- For i steps $\quad V_{i}=T V_{i-1}=T^{i} R$
- Infinite horizon $\lim _{i \rightarrow \infty} V_{i}=T^{\infty} R=T V^{*}=V^{*}$

Modified Policy Iteration

- Guess V_{0} (usually just R), and π
- i=1
- Repeat until convergence*
- For $\mathrm{j}=1$ to n
- $V_{i}=T^{\pi} V_{i-1}$ n steps of iterative
- $\mathrm{i}=\mathrm{i}+1$ policy evaluation
- $\pi=\operatorname{greedy}\left(\mathrm{V}_{\mathrm{i}-1}\right)$
- Special cases: $\mathrm{n}=1$ (VI), $\mathrm{n} \rightarrow \infty$ (PI)

MDP Limitations \rightarrow Reinforcement Learning

- MDP operate at the level of states
- States = atomic events
- We usually have exponentially (or infinitely) many of these
- We assume P and R are known
- Machine learning to the rescue!
- Infer P and R (implicitly or explicitly from data)
- Generalize from small number of states/policies

