Markov Decision Processes (MDPs)

Ron Parr CompSci 370 Department of Computer Science Duke University

With thanks to Kris Hauser for some slides

The Winding Path to Reinforcement Learning

· Decision Theory

- Descriptive theory of optimal behavior
- Markov Decision Processes
- Mathematical/Algorithmic realization of Decision Theory
- Reinforcement Learning
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

Playing a Game Show

- Assume series of questions
 - Increasing difficulty
 - Increasing payoff
- Choice:
 - Accept accumulated earnings and quit
 - Continue and risk losing everything
- "Who wants to be a millionaire?"

Making Optimal Decisions

- Work backwards from future to present
- Consider \$50,000 question
 - Suppose P(correct) = 1/10
 - V(stop)=\$11,100
 - V(continue) = 0.9*\$0 + 0.1*\$61.1K = \$6.11K
- Optimal decision stops

Working Backwards

Red X indicates bad choice

Dealing with Loops

Suppose you can pay \$1000 (from any losing state) to play again

From Policies to Linear Systems

- Suppose we always pay until we win.
- What is value of following this policy?

$$V(s_0) = 0.10(-1000 + V(s_0)) + 0.90V(s_1)$$

$$V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2)$$

$$V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3)$$

$$V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100)$$

Return to Start

Continue

And the solution is...

The MDP Framework

• State space: S

• Action space: A

• Transition function: P

• Reward function: R(s,a,s') or R(s,a) or R(s)

Discount factor: γ

• Policy: $\pi(s) \rightarrow a$

Objective: *Maximize expected, discounted return* (decision theoretic optimal behavior)

Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

Applications of MDPs

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)
 - Debt collection strategies (Abe et al.)
 - Data center management (DeepMind)

Applications of MDPs

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)
- Agriculture
 - Herd management (Kristensen, Toft)
- Other
 - Sports strategies
 - Board games
 - Video games

The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_t | A_{t-1}S_{t-1},...,A_0S_0) = P(S_t | A_{t-1}S_{t-1})$
- Markov is special kind of conditional independence
- Future is independent of past given current state, action

Understanding Discounting

- · Mathematical motivation
 - Keeps values bounded
 - What if I promise you \$0.01 every day you visit me?
- Economic motivation
 - Discount comes from inflation
 - Promise of \$1.00 in future is worth \$0.99 today
- Probability of dying (losing the game)
 - Suppose ϵ probability of dying at each decision interval
 - Transition w/prob ϵ to state with value 0
 - Equivalent to 1- ϵ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence of the algorithms we'll see later
 - Leads to slightly myopic policies
- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time

Value Determination

Determine the value of each state under policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

Bellman Equation for a fixed policy π

$$V^{\pi}(s_1) = 1 + \gamma(0.4V^{\pi}(s_2) + 0.6V^{\pi}(s_3))$$

Matrix Form

$$\mathbf{P}^{\pi} = \begin{pmatrix} P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\ P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\ P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3)) \end{pmatrix}$$

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

This is a generalization of the game show example from earlier

How do we solve this system efficient? Does it even have a solution?

Solving for Values

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

For moderate numbers of states we can solve this system exacty:

$$\mathbf{V}^{\pi} = (\mathbf{I} - \gamma \mathbf{P}^{\pi})^{-1} \mathbf{R}^{\pi}$$

Guaranteed invertible because p^{π} has spectral radius <1

Iteratively Solving for Values

$$\mathbf{V}^{\pi} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi} + \mathbf{R}^{\pi}$$

For larger numbers of states we can solve this system indirectly:

$$\mathbf{V}^{\pi}{}_{i+1} = \gamma \mathbf{P}^{\pi} \mathbf{V}^{\pi}{}_{i} + \mathbf{R}^{\pi}$$

Guaranteed convergent because $\ensuremath{\gamma} P_\pi$ has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove
- Contraction analysis...

Contraction Analysis

• Define maximum norm

$$||V||_{\infty} = \max_{i} |V[i]|$$

Consider two value functions V^a and V^b each at iteration 1:

$$\left\|V_1^a - V_1^b\right\|_{\infty} = \varepsilon$$

WLOG say

$$V_1^a \le V_1^b + \vec{\mathcal{E}}$$
 (Vector of all ϵ 's)

Contraction Analysis Contd.

• At next iteration for Vb:

$$V_2^b = R + \gamma P V_1^b$$

For V^a

$$V_{_{2}}^{a} = R + \gamma P(V_{_{1}}^{a}) \leq R + \gamma P(V_{_{1}}^{b} + \vec{\varepsilon}) = R + \gamma PV_{_{1}}^{b} + \gamma P\vec{\varepsilon} = R + \gamma PV_{_{1}}^{b} + \gamma \vec{\varepsilon}$$

• Conclude:

$$\left\| V_{2}^{a} - V_{2}^{b} \right\|_{\infty} \leq \gamma \varepsilon$$

Importance of Contraction

- Any two value functions get closer
- True value function V* is a fixed point (value doesn't change with iteration)
- Max norm distance from V* decreases dramatically quickly with iterations

$$\left\| \boldsymbol{\mathcal{V}}_0 - \boldsymbol{\mathcal{V}}^* \right\|_{\infty} = \varepsilon \Longrightarrow \left\| \boldsymbol{\mathcal{V}}_n - \boldsymbol{\mathcal{V}}^* \right\|_{\infty} \le \gamma^n \varepsilon$$

Finding Good Policies

Suppose an expert told you the "true value" of each state:

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

$$V^*(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$

Decision theoretic optimal choice given V*
If we know V*, picking the optimal action is easy
If we know the optimal actions, computing V* is easy
How do we compute both at the same time?

Value Iteration

We can't solve the system directly with a max in the equation Can we solve it by iteration?

$$V_{i+1}(s) = \max_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i}(s')$$

- •Called value iteration or simply successive approximation
- •Same as value determination, but we can change actions
- •Convergence:
 - Can't do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (exercise)
 - Converges quickly

Robot Navigation Example

- The robot (shown) lives in a world described by a 4x3 grid of squares with square (2,2) occupied by an obstacle
- A state is defined by the square in which the robot is located: (1,1) in the above figure
 - \rightarrow 11 states

Action (Transition) Model

U brings the robot to:

- (1,2) with probability 0.8
- (2,1) with probability 0.1
- (1,1) with probability 0.1
- In each state, the robot's possible actions are {U, D, R, L}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can't move, it stays in the same square

[This model satisfies the Markov condition]

Action (Transition) Model

L brings the robot to:

- (1,1) with probability 0.8 + 0.1 = 0.9
- (1,2) with probability 0.1
- In each state, the robot's possible actions are {U, D, R, L}
- For each action:
 - With probability 0.8 the robot does the right thing (moves up, down, right, or left by one square)
 - With probability 0.1 it moves in a direction perpendicular to the intended one
 - If the robot can't move, it stays in the same square

[This model satisfies the Markov condition]

Terminal States, Rewards, and Costs

"terminal" states

Not part of formal

MDP specification.

Usually handled by
forcing state to have a
fixed value, e.g. +1

- Two terminal states: (4,2) and (4,3)
- Rewards:
 - R(4,3) = +1 [The robot finds gold]
 - R(4,2) = -1 [The robot gets trapped in quicksand]
 - R(s) = -0.04 in all other states
- This example (from the Russell & Norvig text) assumes no discounting (γ =1)
- Discussion: Is this a good modeling decision?

(Stationary) Policy

- A stationary policy is a complete map π : state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the state is reached
- \blacksquare Under the Markov and infinite horizon assumptions, the optimal policy π^* is necessarily a stationary policy

[The best action in a state does not depends on the past]

(Stationary) Policy

- A stationary policy is a complete map π : state \rightarrow action
- For each non-terminal state it recommends an action, independent of when and how the The optimal policy tries to avoid

"dangerous" state (3,2)

nal policy π^* is

necessarily a stationary policy

Under the M

[The best action in a state does not depends on the past]

Value Iteration Applied

- 1. Initialize the utility of each non-terminal states to $V_0(s) = 0$
- 2. For t = 0, 1, 2, ... do

$$V_{t+1}(s) = R(s) + \max_{a \in Appl(s)} \sum_{s' \in Succ(s,a)} P(s'|s,a)V_t(s')$$

for each non-terminal state s

State Utilities/Values

- The utility of a state s is the maximal expected amount of reward that
 the robot will collect from s and future states by executing some action
 in each encountered state, until it reaches a terminal state (infinite
 horizon)
- Under the Markov and infinite horizon assumptions, the utility of s is independent of when and how s is reached [It only depends on the possible sequences of states after s, not on the possible sequences before s]

Properties of Value Iteration

- VI converges to V* ($\|.\|_{\infty}$ from V* shrinks by γ factor each iteration)
- Converges to optimal policy
- Why? (Because we figure out V*, optimal policy is argmax)
- Optimal policy is stationary (i.e. Markovian depends only on current state)
- Why? (Because we are summing utilities. Thought experiment: Suppose
 you think it's better to change actions the second time you visit a state.
 Why didn't you just take the best action the first time?)

Policy Iteration

Greedy Policy Construction

Let's name the action that looks best WRT V:

$$\pi_{v}(s) = \operatorname{arg\,max}_{a} R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s')$$

Expectation over next-state values

$$\pi_{v} = \operatorname{greedy}(V)$$

Bootstrapping: Policy Iteration

Idea: Greedy selection is useful even with suboptimal V

Guess $\pi_V = \pi_0$ V_{π} = value of acting on π (solve linear system) $\pi_V \leftarrow \text{greedy}(V_{\pi})$ Repeat until policy doesn't change

Guaranteed to find optimal policy
Usually takes very small number of iterations
Computing the value functions is the expensive part

Comparing VI and PI

- VI
 - Value changes at every step
 - Policy may change before exact value of policy is computed
 - Many relatively cheap iterations
- PI
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)
- Convergence
 - Both are contractions in max norm
 - PI is shockingly fast (small number of iterations) in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ (we didn't prove this for PI in class)
- VI costs less per iteration
- For n states, a actions PI tends to take O(n) iterations in practice
 - Recent results indicate $^{\sim}O(n^2a/1-\gamma)$ worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

A Unified View of Value Iteration and Policy Iteration

Notation

• Update for for a fixed policy – definition of T^{π} operator (matrix-vector form):

$$T^\pi V \equiv R_\pi + \gamma P^\pi V$$

 Update with policy improvement – definition of the T operator:

$$TV(s) = \max_{a} r(s, a) + \gamma \sum_{s'} P(s'|s, a)V(s')$$

Value Determination

• For 0 steps $V_0 = R^{\pi}$

• For i steps $V_i = T^{\pi}V_{i-1} = (T^{\pi})^i R^{\pi}$

• Infinite horizon $\lim_{i\to\infty} V_i = (T^\pi)^\infty R^\pi = (1-\gamma P^\pi)^{-1} R^\pi = V^\pi$

Value Iteration

- For 0 steps $V_0=R$ (If R depends on a, pick a with the highest immediate reward)
- For i steps $V_i = TV_{i-1} = T^iR$
- Infinite horizon $\lim_{i\to\infty} V_i = T^{\infty}R = TV^* = V^*$

Modified Policy Iteration

- Guess V_0 (usually just R), and π
- i=1
- Repeat until convergence*
 - For j=1 to n • $V_i = T^{\pi}V_{i-1}$ • i = i+1n steps of iterative policy evaluation
 - $-\pi = greedy(V_{i-1})$
- Special cases: n=1 (VI), n→∞ (PI)

MDP Limitations → Reinforcement Learning

- MDP operate at the level of states
 - States = atomic events
 - We usually have exponentially (or infinitely) many of these
- We assume P and R are known
- Machine learning to the rescue!
 - Infer P and R (implicitly or explicitly from data)
 - Generalize from small number of states/policies