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Some Actual Planning Applications

• Used to fulfill mission objectives in Nasa’s Deep Space 
One (Remote Agent)
– Particularly important for space operations due to latency

• Also used for Rovers
– Finally(!) used onboard on curiosity:

http://www.jpl.nasa.gov/news/news.php?release=2013-259&rn=news.xml&rst=3884

• Aircraft assembly schedules
• Logistics for the U.S. Navy
• Observation schedules for Hubble space telescope
• Scheduling of operations in an Australian beer factory
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Scheduling

• Many “planning” problems are scheduling problems

• Scheduling can be viewed as a generalization of the 
planning problem to include resource constraints
– Time & Space
– Money & Energy

• Many principles from regular planning generalize, 
but some extensions (not discussed here) are used

Continuous Motion Planning
• Another variation on planning involves planning in continuous state spaces 

for, e.g., robots

• Main challenge is curse of dimensionality

• Can’t discretize high dimensional spaces by brute force

• Research focuses on sampling, more clever discretization approaches than 
brute force, exploiting hardware and domain features

• See: https://youtu.be/u4snHh_S_Ao
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Characterizing Discrete Planning Problems

• Start state (group of states)
• Goal – almost always a group of states
• Actions

• Objective:  Plan = A sequence of actions that is 
guaranteed to achieve the goal.

• Like everything else, can view planning as search…
• So, how is this different from generic search?

What makes planning special?

• States typically specified by a set of relations or propositions:
– On(solar_panels, cargo_floor)
– arm_broken

• Goal is almost always a set
– Typically care about a small number of things:

• at(Ron, airport), 
• parked_in(X, car_of(Ron))
• airport_parking_stall(X)

– Many things are irrelevant
• parked_in(Y, car_of(Bill))
• adjacent(X,Y)

• Branching factor is large
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Planning Algorithms

• Not the “hot” thing in AI now, but still active, important
• Regular competitions pit different algorithms against 

each other on suites of challenge problems 
http://www.icaps-conference.org/index.php/Main/Competitions

• Algorithms compete in different categories
– Classical vs. probabilistic vs. temporal
– Optimal vs. Satisficing vs. Bounded cost

• No clearly superior method has emerged

PDDL – A Language for Planning 
Problems

• Actions have a set of preconditions and effects
• Think of the world as a database

– Database stores true facts about the world – on(block, table)
– Preconditions specify what must be true in the database for 

the action to be applied
– Effects specify which things will be changed in the database if 

the action is taken

• NB:  PDDL supersedes an earlier, similar representation 
called STRIPS
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move(obj,from,to)
• Preconditions

– clear(obj)
– on(obj,from)
– clear(to)

• Effects
– Add

• on(obj,to)
• clear(from)

– Delete*
• on(obj,from)
• clear(to)

x

y

z

move(y,x,z)*STRIPS had a separate delete category. PDDL
implements deletions as negative effects, but the
difference is primarily syntactic

Limitations of PDDL

• Assumes that a small number of things change with each action
– Dominoes L
– Pulling out the bottom block from a stack L

• Preconditions and effects are conjunctions

• Can support quantification (which can fix the domino problem) but 
not always implemented for efficiency reasons

• Typically (though not necessarily) implements a “closed world” 
assumption - We only assert that which is true; can’t assert that 
which is false. (Negative effects typically delete facts from the 
database, rather than asserting that things are false.)
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Why Have Limitations?

• Planning languages are designed to allow 
fast search

• If preconditions were arbitrary logical 
statements, search might require proving 
theorems just to figure out if an action can 
be used

Planning Actions vs. Search Actions

• Plan actions are really action schemata
• Every PDDL rule specifies a huge number of ground-

level actions
• Consider move(obj, from, to)

– Assume n objects in the world
– This action alone specifies O(n3) ground actions
– Planning tends to have a very large action space

• Compare with CSPs
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Planning vs. CSPs

• Both have large action spaces

• CSPs are atemporal

• CSP:  Effects of actions (assignments) are implicit

• Planning:  Path matters - Knowing that solution exists 
isn’t sufficient

How hard is planning?

• Planning is NP hard

• We use a technique called reduction to 
show that planning is at least as hard (up to 
polynomial factor) as graph coloring
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Graph Coloring Reduction

• Assumptions about planning language:
– No negations allowed
– OK to test equality

• Given a graph coloring problem, what is our goal?
• Goal is: colored(vi) for all nodes vi

• Initial state is: 
– uncolored(vi) for all nodes vi
– color(vi,nil) for all nodes vi
– Available(vi,cj) for all nodes and colors

• What are our actions?
– color(V,color)

Coloring Actions color(vi,c)

• One action for each vi

• Preconditions
– uncolored(vi)
– available(vi,c)

• Effects
– Add

• colored(vi)
– Delete

• uncolored(vi)
• available(vi,cj)…

Need to add one of these for each neighbor of vi
This is why we have a separate action description
For each node.
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What this Does

• Actions correspond to coloring graph nodes

• Only legal assignments are allowed

• Plan exists iff graph is colorable

• Claim:  Planning is at least as hard as graph coloring, 
i.e., NP-hard

What just happened?

• Example of a general technique: reduction

• Powerful technique to compare the 
difficulty of two problems

A instance
Poly-time
xformation

B Solver

poly time A solver if B is poly time
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How to Think About This

• If planning can be solved in polynomial time, 
then graph coloring can be solved in poly time

• O(poly(n)+poly(n))=O(poly(n))

• If graph coloring can’t be solved in poly time, 
then neither can planning

Planning Can be Harder than 
Graph Coloring

• Consider the towers of Hanoi:
– http://towersofhanoi.info/Animate.aspx

– PDDL actions are the disc moving actions
• Requires exponential number of moves

• Graph coloring can be verified in poly time
• Planning may require an exponential size 

demonstration that a plan is possible

http://towersofhanoi.info/Animate.aspx
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Should plan size worry us?
• What if problem has exponential solution?
• In most cases, impractical to execute (or even write 

down) the solution, so why worry?

• May be artifact of representation
– Towers of Hanoi solution can be expressed as a simple 

recursive program
– Nice if planner could find such programs

• Common AI limitation: Discovering new representations

Planning Using Search

• Forward Search:
– Blind forward search is problematic because of the 

huge branching factor
– Some success using this method with carefully chosen 

action pruning techniques (not covered in class)

• Backward Search:
– Tends to focus search on relevant terms
– Called “Goal Regression” in the planning context
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Why Doesn’t A* help with 
Forward Search?

• Natural heuristics can be misleading

• Making progress towards achieving one part of a 
complex objective might make it harder to achieve 
another part

• Sussman anomaly is a classic example of this

The Sussman Anomaly

z

yx z

y

x

Goal:  clear(x), on(x,y), on(y,z)
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When Simple Heuristics Faile

• Goal clear(x), on(x,y), on(y,z)
• Does achieving one of these bring us closer to goal?
• What if we move y onto z first?
• What if we clear x by moving z onto y?

z

yx z

y

x

Backward Planning: Goal Regression

• Goal regression is a form of backward search from goals
• Basic principle goes back to Aristotle
• Embodied in earliest AI systems

– GPS: General Problem Solver by Newell & Simon

• Cognitively plausible
• Idea:

– Pick actions that achieve (some of) your goal
– Make preconditions of these actions your new goal
– Repeat until the goal set is satisfied by start state
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Goal Regression Example

x
y

z

Goal:  on(x,z)

Regress on(x,z)
through move(z,table,x)

New goal:
clear(x)

Facts About Goal Regression

• Elegant solution to the problem of backward 
search from multiple goal states
– In planning, goal state is usually a set of states
– Does backward search at the level of state sets

• Goal regression is sound and complete
• Can be more efficient than forward search unless 

forward search is guided by powerful heuristics
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Summary of Traditional Planners

• Backward search methods are more focused gain 
efficiency by working with state sets

• Forward  (traditional) search methods good when:
– Search space was very narrow (only a small number of 

reasonable things to do, which prevented exponential growth 
in reachable search space)

– Domain-specific knowledge could be used to narrow the 
search space with powerful heuristics

Modern Planners (Oversimpified)

• One family of approaches uses search techniques 
combined with powerful domain independent (and/or 
domain specific) heuristics that take into account
interactions between actions over time (e.g. certain 
sequences of actions are impossible or likely to be 
unhelpful) 

• Another family converts everything into a giant logic 
problem (SAT) and uses a generic solver
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What’s Missing?

• As described, plans are “open loop”
• No provisions for:

– Actions failing
– Uncertainty about initial state
– Observations

• Solutions:
– Plan monitoring, replanning
– Conformant/Sensorless planning
– Contingency planning 

Planning Under Uncertainty

• Probability distribution over possible outcomes?
– Called:  Planning under uncertainty, decision theoretic planning, 

Markov Decision Processes (MDPs)
– Much more robust:  Solution is a “universal plan”, i.e., a plan for all 

possible outcomes (monitoring and replanning are implicit)
– Much more difficult computationally

• What if observations are unreliable?
– Called: “Partial Observability”, Partially Observable MDPs (POMDPs)
– Applications to medical diagnosis, defense, sensor planning
– Way, way harder computationally


