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This note discusses the closely-related image-processing operations of correlation and convo-
lution, which are pervasive in image processing and computer vision. A simple pattern matching
problem described in Section 1 motivates correlation. Convolution is only slightly different from
correlation and is introduced in Section 2. Section 3 discusses a first application of convolution,
that is, image filtering for smoothing and noise reduction.

1 Image Correlation

The image in figure 1(a) shows a detail of the ventral epidermis of a fruit fly embryo viewed through
a microscope. Biologists are interested in studying the shapes and arrangement of the dark, sail-like
shapes that are called denticles.

A simple idea for writing an algorithm to find the denticles automatically is to create a template
T , that is, an image of a typical denticle. Figure 1(b) shows a possible template, which was obtained
by blurring (more on blurring later) a detail out of another denticle image. One can then place the
template at all possible positions (r, c) of the input image I, where r is the row coordinate and c
denotes the column, and somehow measure the similarity between the template T and a window
W (r, c) out of I, of the same shape and size as T . Places where the similarity is high are declared
to be denticles, or at least image regions worthy of further analysis.

In practice, different denticles, although more or less similar in shape, may differ even dramat-
ically in size and orientation, so the scheme above needs to be refined, perhaps by running the
denticle detector with templates (or images) of varying scale and rotation. For now, let us focus
on the simpler situation in which the template and the image are fixed.

If the pixels values in template T and window W (r, c) are strung into vectors t and w(r, c), one
way to measure their similarity is to take the inner product

ρ(r, c) = τTω(r, c) (1)

of nomalized versions

τ =
t−mt

‖t−mt‖
and ω(r, c) =

w(r, c)−mw(r,c)

‖w(r, c)−mw(r,c)‖
(2)

of t and w(r, c), where mt and mw(r,c) are the mean values of t and w(r, c) respectively. Subtracting
the means make the resulting vectors insensitive to possible changes in image brightness, and
dividing by the vector norms makes them insensitive to possible changes in image contrast. The
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Figure 1: (a) Denticles on the ventral epidermis of a Drosophila embrio. Image courtesy of Daniel
Kiehart, Duke University. (b) A denticle template.

dot product of two unit vectors is equal to the cosine of the angle between them, and therefore the
correlation coefficient is a number between −1 and 1:

−1 ≤ ρ(r, c) ≤ 1 .

It is easily verified that ρ(r, c) achieves the value 1 when W (r, c) = αT + β for some positive
number α and arbitrary number β, and it achieves the value −1 when W (r, c) = αT + β for some
negative number α and arbitrary number β. In words, ρ(r, c) = 1 when the window W (r, c) is
identical to template T except for brightness β or contrast α, and ρ(r, c) = −1 when W (r, c) is a
contrast-reversed version of T with possibly scaled contrast α and brightness possibly shifted by β.

The operation (1) of computing the inner product of a template with the contents of an image
window—when the window is slid over all possible image positions (r, c)—is called cross-correlation,
or correlation for short. When the normalizations (2) are applied first, the operation is called
normalized cross-correlation. Since each image position (r, c) yields a value ρ, the result is another
image, in the sense that it is an array of values. However, the pixel values in the output image can
be positive or negative.

For simplicity, let us think about the correlation of an image I and a template T , without
normalization. The inner product between the vector version t of T and the vector version w(r, c)
of window W (r, c) at position (r, c) in the image I can be spelled out as follows:

J(r, c) =

h∑
u=−h

h∑
v=−h

I(r + u, c+ v)T (u, v) (3)

where J is the resulting output image. For simplicity, the template T and the window W (r, c) are
assumed to be squares with 2h+ 1 pixels on their side—so that h is a bit less than half the width
of the window (or template). This expression can be interpreted as follows:
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Place the template T with its center at pixel (r, c) in image I. Multiply the template
values with the pixel values under them, add up the resulting products, and put the
result in pixel J(r, c) of the output image. Repeat for all positions (r, c) in I.

In code, if the output image has m rows and n columns:

for r = 1:m

for c = 1:n

J(r, c) = 0

for u = -h:h

for v = -h:h

J(r, c) = J(r, c) + T(u, v) * I(r+u, c+v)

end

end

end

end

In practice, we need to make sure that the window W (r, c) does not fall off the image boundaries.
We will consider this aspect later.

If you are curious, Figure 2(a) shows the normalized cross-correlation for the image and template
in Figure 1. The code also considers multiple scales and rotations, and returns the best matches
after additional image cleanup operations (Figure 2(b)). Pause to look for false positive and false
negative detections. Again, just to satisfy your curiosity, the code is listed in the Appendix. Look for
the call to cv.matchTemplate, the Python OpenCV implementation of 2-dimensional normalized
cross correlation. This code contains too many “magic numbers” to be useful in general, and is
used here for pedagogical reasons only.

2 Image Convolution

Two-dimensional convolution is the same as two-dimensional correlation but for two minus signs:

J(r, c) =
h∑

u=−h

h∑
v=−h

I(r−u, c−v)H(u, v) .

The “template” H is now called the kernel of the convolution. By applying the changes of variables
u← −u, v ← −v, we can write

J(r, c) =

h∑
u=−h

h∑
v=−h

I(r + u, c+ v)H(−u,−v) .

Thus, convolution with the kernel H(u, v) is the same as correlation with the template T (u, v) =
H(−u,−v). In other words, to compute a convolution, one flips the kernel upside-down and left-
to-right and performs a correlation with the resulting template.1 For instance:

H =
11 12 13
21 22 23

→ T =
23 22 21
13 12 11

.

1Of course, for symmetric kernels this flip makes no difference.
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Figure 2: (a) Rotation- and scale-sensitive correlation image ρ(r, c) for the image in Figure 1
(a). Positive peaks (red areas) correlate with denticle locations. Blue represents negative values,
and zeros are rendered in white. (b) Red dots are cleaned-up maxima in the correlation image,
superimposed on the input image.

For either operation (correlation or convolution), mathematical manipulation becomes easier if
the domains of both kernel (or template) and image are extended to the entire integer plane Z2 by
the convention that unspecified values are set to zero. In this way, the summations in the definition
of convolution can be extended to the entire plane as well:2

J(r, c) =

∞∑
u=−∞

∞∑
v=−∞

H(u, v)I(r − u, c− v) (4)

for convolution and

J(r, c) =
∞∑

u=−∞

∞∑
v=−∞

T (u, v)I(r + u, c+ v) (5)

for correlation. This simpler notation lets us examine more easily one of the reasons why mathe-
maticians prefer convolution over correlation: The changes of variables u ← r − u and v ← c − v
entail the equivalence of equation (4) with the following expression:

J(r, c) =

∞∑
u=−∞

∞∑
v=−∞

H(r − u, c− v)I(u, v) (6)

2It would not be wise to do so also in the equivalent program!
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which shows that “image” and “kernel” are interchangeable. Thus, convolution commutes. If we
introduce the symbol ’∗’ for convolution we can conclude as follows.

The convolution of an image I with the kernel H is defined as follows:

J(r, c) = [I ∗H](r, c) = [H ∗ I](r, c) =

∞∑
u=−∞

∞∑
v=−∞

H(u, v)I(r − u, c− v)

=
∞∑

u=−∞

∞∑
v=−∞

H(r − u, c− v)I(u, v) for (r, c) ∈ Z2 . (7)

In contrast, correlation does not commute: The changes of variables u← r + u and v ← c+ v
yield the following expression equivalent to (5):

J(r, c) =

∞∑
u=−∞

∞∑
v=−∞

T (u− r, v − c)I(u, v) ,

so correlating T with I (as opposed to correlating I with T ) yields an image J(−r,−c) that is the
upside-down and left-to-right flipped version of J(r, c): By replacing r with −r and c with −c, we
obtain

J(−r,−c) =

∞∑
u=−∞

∞∑
v=−∞

T (u+ r, v + c)I(u, v) ,

which is the correlation of T with I.

A Mathematical Aside A second reason why mathematicians prefer convolution over correla-
tion is that convolution in one dimension has a deep connection with polynomial multiplication.
Consider for instance the two sequences of real numbers

a = (a0, a1, a2) and b = (b0, b1, b2, b3) .

If we think of these two sequences as extending their domains indefinitely with zeros,

a = (. . . , 0, a0, a1, a2, 0, . . .) and b = (. . . , 0, b0, b1, b2, b3, 0, . . .) ,

then the nonzero terms of their (one-dimensional) convolution form the sequence

c = a ∗ b = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a0b3 + a1b2 + a2b1, a1b3 + a2b2, a0b3) .

These terms are the coefficients c0, . . . , c5 of the product

c0 + c1x+ c2x
2 + c3x3 + c4x

4 + c5x
5

of the two polynomials

a0 + a1x+ a2x
2 and b0 + b1x+ b2x

2 + b3x3 .

Thus, multiplying two polynomials corresponds to convolving their coefficients. This connection has
important ramifications, since Fourier transformations are polynomials (in the variable 1

ne
−2πi/n).

However, we will not need these considerations in this course.
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Practical Aspects: Image Boundaries. The convolution neighborhood becomes undefined at pixel
positions that are very close to the image boundaries, where the kernel window is not entirely contained in
the image. Typical solutions to this issue include the following:

• Consider images and kernels to extend with zeros where they are not defined, and then only output
the nonzero part of the result. See Figure 3, top. This full convolution yields an output image J that
is larger than the input image I. For instance, convolution of an m × n image with a k × l kernel
yields an image of size (m+ k − 1)× (n+ l − 1).

• Define the output image J to be smaller than the input I, so that the values of pixels in J that are
too close to the image boundaries are not computed. See Figure 3, middle. For instance, convolution
of an m× n image with a k × l kernel yields an image of size (m− k + 1)× (n− l + 1). This valid
convolution is the least committal of all solutions, in that it does not make up spurious pixel values
outside the input image. However, this solution shares with the previous one the disadvantage that
image sizes vary with the number and neighborhood sizes of the convolutions performed on them.

• Pad the input image with a rim of zero-valued pixels that is wide enough that the convolution kernel
H fits inside the padded image whenever its center is placed anywhere on the unpadded image. See
Figure 3, bottom. This ”same” convolution is simple to implement (although not as simple as the
previous one), and preserves image size: J is as big as I. However, now the input image has an
unnatural frame of zeros (black pixels) all around it. This causes problems for certain types of kernels.
For the blur function, the output image merely darkens at the edges, because of all the zeros that
enter the calculation. If the kernel is designed so that convolution with it computes image derivatives
(a situation described later on), the value jumps around the rim yield very large values in the output
image.

• Pad the input image with replicas of the boundary pixels (with any of the three padding styles described
above) rather than with zeros. For instance, padding with a 2-pixel rim around a 4 × 5 image would
look as follows:


i11 i12 i13 i14 i15
i21 i22 i23 i24 i25
i31 i32 i33 i34 i35
i41 i42 i43 i44 i45

 →



i11 i11 i11 i12 i13 i14 i15 i15 i15
i11 i11 i11 i12 i13 i14 i15 i15 i15
i11 i11 i11 i12 i13 i14 i15 i15 i15
i21 i21 i21 i22 i23 i24 i25 i25 i25
i31 i31 i31 i32 i33 i34 i35 i35 i35
i41 i41 i41 i42 i43 i44 i45 i45 i45
i41 i41 i41 i42 i43 i44 i45 i45 i45
i41 i41 i41 i42 i43 i44 i45 i45 i45


.

This is a relatively simple solution, avoids spurious discontinuities, and preserves image size.

The Python convolution function scipy.signal.convolve2d provides mode options ’full’, ’valid’, and

’same’ to implement the first three alternatives above, in that order. The function scipy.signal.correlate2d

performs correlation. The Python Open CV function cv2.filter2D() performs correlation for image filtering

(see next Section) and also provides various types of padding.

3 Filters

Convolutions are pervasive in image processing, where they are used for various purposes, including
the reduction of the effects of image noise and image differentiation. We consider the first of these
uses here.

Images are taken with cameras, and the electronics of a camera introduce random noise as a
result of the thermal agitation of electrons in the circuits. In addition, a camera’s sensing elements
(pixels) effectively count the number of photons that hit them during the picture’s exposure period.
This number can vary at random, resulting in further noise. Finally, even the output of a perfect,
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Figure 3: The full (top), valid (middle) and “same” (bottom) styles of convolution.
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ideal camera are eventually stored as integer pixel values in a computer array (typically eight-bit
integers). Clipping real values to integers results in another discrepancy between true and recorded
image called pixel quantization. While quantization is deterministic, the value being quantized is
not, so even pixel quantization can be described as random noise.

The effects of random noise on images can be reduced by smoothing, that is, by replacing
every pixel value by a weighted average of the values of its neighbors. The reason for this can be
understood by thinking of an image patch that is small enough that the image intensity function
I is well approximated by its tangent plane at the center (r, c) of the patch (that is, a locally
linear intensity function). Then, the average value of the patch is I(r, c), so that averaging does
not alter image value. On the other hand, noise added to the image can usually be assumed to be
zero mean, so that averaging reduces the noise component. Since both filtering and summation are
linear, they can be switched: the result of filtering image plus noise is equal to the result of filtering
the image (which does not alter values) plus the result of filtering noise (which reduces noise). The
net outcome is an increase of the signal-to-noise ratio.

For independent noise values, noise reduction is proportional to the square root of the number
of pixels in the smoothing window, so a large window is preferable. However, the assumption that
the image intensity is approximately linear within the smoothing window fails more and more as the
window size increases, and is violated particularly badly along edges, that is, curves in the image
where the image intensity function is nearly discontinuous. Thus, when smoothing, a compromise
must be reached between noise reduction and image blurring.

Averaging in a k × k window amounts to multiplying all values by 1/k2 and adding up the
results. In other words, convolving with a kernel with values 1/k2. For instance, when k = 3, the
averaging kernel is

H =
1

9

 1 1 1
1 1 1
1 1 1

 .

However, more general kernels can be used. Any smoothing kernel is usually rotationally sym-
metric, as there is no reason to privilege, say, the pixels on the left of a given pixel over those on
its right3:

H(v, u) = γ(ρ)

where
ρ =

√
u2 + v2

is the distance from the center of the kernel to its pixel (u, v). Thus, a rotationally symmetric
kernel can be obtained by rotating a one-dimensional function γ(ρ) defined on the nonnegative
reals around the origin of the plane (figure 4).

The plot in figure 4 was obtained from the (unnormalized) Gaussian function

γ(ρ) = e−
1
2( ρσ )

2

with σ = 6 pixels (one pixel corresponds to one cell of the mesh in figure 4), so that

H(v, u) = G(v, u)
def
= e−

1
2
u2+v2

σ2 . (8)

3This only holds for smoothing. Nonsymmetric filters tuned to particular orientations are very important in vision.
Even for smoothing, some authors have proposed to bias filtering along an edge away from the edge itself—an idea
worth pursuing.
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Figure 4: The two dimensional kernel on the left can be obtained by rotating the function γ(r) on
the right around a vertical axis through the maximum of the curve (r = 0).

The greater σ is, the more smoothing occurs.
This Gaussian kernel is by far the most popular smoothing function in computer vision. The

Gaussian function satisfies an amazing number of mathematical properties, and describes a vast va-
riety of physical and probabilistic phenomena. Here we only look at properties that are immediately
relevant to computer vision.

The first set of properties is qualitative. The Gaussian is, as noted above, symmetric. It also
emphasizes nearby pixels over more distant ones, and therefore reduces smearing (blurring). And
yet smoothing still occurs, because convolution with a properly normalized Gaussian kernel still
performs averaging. We will look at normalization soon.

A more quantitative, useful property of the Gaussian function is its smoothness. If G(v, u) is
considered as a function of real variables u, v, it is differentiable infinitely many times. Although
this property by itself is not too useful with discrete images, it implies that the function is composed
by as compact a set of frequencies as possible.4

Another important property of the Gaussian function for computer vision is that it never crosses
zero, since it is always positive. This is essential for instance for certain types of edge detectors,
for which smoothing cannot be allowed to introduce its own zero crossings in the image.

Practical Aspects: Separability. An important property of the Gaussian function from a programming
standpoint is its separability. A function G(x, y) is said to be separable if there are two functions g and g′

of one variable such that
G(x, y) = g(x)g′(y) .

For the Gaussian, this is a consequence of the fact that

ex+y = exey

which leads to the equality
G(x, y) = g(x)g(y)

where

g(x) = e−
1
2 ( xσ )2 (9)

is the one-dimensional (unnormalized) Gaussian.

Thus, the Gaussian of equation (8) separates into two equal factors, one in x and one in y. This has
useful computational consequences. Suppose that for the sake of concrete computation we revert to a finite

4This last sentence will only make sense to you if you have had some exposure to the Fourier transform. If not,
it is OK to ignore this statement.
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domain for the kernel function. Because of symmetry, the kernel is defined on a square, say [−h, h]2. With
a separable kernel, the convolution (7) can then itself be separated into two one-dimensional convolutions:

J(r, c) =

h∑
u=−h

g(u)

h∑
v=−h

g(v)I(r − u, c− v) , (10)

with substantial savings in the computation. In fact, the double summation

J(r, c) =

h∑
u=−h

h∑
v=−h

G(v, u)I(r − u, c− v)

requires m2 multiplications and m2 − 1 additions, where m = 2h+ 1 is the number of pixels in one row or
column of the convolution kernel G(v, u). The sums in (10), on the other hand, can be rewritten so as to
be computed by 2m multiplications and 2(m− 1) additions as follows:

J(r, c) =

h∑
u=−h

g(u)φ(r − u, c) (11)

where

φ(r, c) =

h∑
v=−h

g(v)I(r, c− v) . (12)

Both these expressions are convolutions, with an m×1 and a 1×m kernel, respectively, so they each require
m multiplications and m− 1 additions.

Of course, to actually achieve this gain, convolution must now be performed in the two steps (12) and
(11): first convolve the entire image with a horizontal version of g in the horizontal direction, then convolve
the resulting image with a vertical version of g in the vertical direction (or in the opposite order, since
convolution commutes). If we were to perform (10) literally, there would be no gain, as for each value of
r − u, the internal summation is recomputed m times, since any fixed value d = r − u occurs for pairs
(r, u) = (d−h,−h), (d−h+1,−h+1), . . . , (d+h, h) when equation (10) is computed for every pixel (r, c).

Thus, separability can decrease the operation count to 2m multiplications and 2(m− 1) additions, with an
approximate gain in efficiency by a factor

2m2 − 1

4m− 2
≈ 2m2

4m
=
m

2
.

If for instance m = 21, we need only 42 multiplications instead of 441, with an approximately tenfold increase

in speed.

Exercise. Notice the similarity between γ(ρ) and g(x). Is this a coincidence?

Practical Aspects: Truncation and Normalization. The Gaussian functions in this section were
defined with no attention paid to normalization. However, proper normalization must be performed when
actual values output by filters are important. For instance, if we want to smooth an image, initially stored in
a file of bytes, one byte per pixel, and write the result to another file with the same format, the values in the
smoothed image should be in the same range as those of the unsmoothed image. Also, when we compute
image derivatives, it is sometimes important to know the actual value of the derivatives, not just a scaled
version of them.

Proper normalization for a smoothing filter is simple. We first compute the unscaled version of, say, the
Gaussian in equation (8), and then normalize it by sum of the samples:

G̃(v, u) = e
− 1

2
u2+v2

σ2 (13)

cG̃ =
h∑

i=−h

h∑
j=−h

G̃(j, i)

G(v, u) =
1

cG̃
G̃(v, u) .

10



To verify that this yields the desired normalization, consider an image with constant intensity I0. Then its
convolution with the new G(v, u) should yield I0 everywhere as a result. In fact, we have

J(r, c) =

h∑
u=−h

h∑
v=−h

G(v, u)I(r − u, c− v)

= I0

h∑
u=−h

h∑
v=−h

G(v, u)

= I0

as desired.

Of course, normalization can be performed on one-dimensional Gaussian functions separably, if the two-
dimensional Gaussian function is written as the product of two one-dimensional Gaussian functions. The
concept is the same:

g̃(u) = e−
1
2 (uσ )2

cg̃ =
1∑h

v=−h g̃(v)
(14)

g(u) = cg̃ g̃(u) .
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Appendix

Python Code for Denticle Detection

[This code is available here for download.]

import numpy as np

import cv2 as cv

from math import ceil, floor, sqrt

def denticles(img, template):

# Does a window around p contain a dark enough pixel?

def isDark(img, p, thr):

rows = range(p[0]-5, p[0]+6)

cols = range(p[1]-5, p[1]+6)

win = img[rows, cols]

mn = np.amin(win)

return mn <= thr

m, n = img.shape

corrThreshold, minArea = 0.5, m * n / 10000 # Smallest accepted correlation

maxValue = np.percentile(img, 5) # Brightest accepted denticle pixel

# Range of rotations and scales to consider

rotations = np.linspace(0, 360, 17)

rotations = rotations[:-1]

scales = np.linspace(0.5, 2.0, 6)

# Dimensions and center of template image

srcShape = tuple(template.shape[1-k] for k in range(2))

srcCenter = tuple(srcShape[k]/2 for k in range(2))

# Loop over rotations and scales and store the best correlation at every pixel

cmax = np.zeros(img.shape) # Max correlation value at every pixel

for rotation in rotations:

for scale in scales:

# Dimensions and center of transformed template image

dstShape = tuple(ceil(srcShape[k] * scale * sqrt(2)) for k in range(2))

dstCenter = tuple(dstShape[k]/2 for k in range(2))

# Transofrmed template image

xform = cv.getRotationMatrix2D(srcCenter, rotation, scale)

adjust = [dstCenter[k] - srcCenter[k] for k in range(2)]

xform[:, 2] += adjust

t = cv.warpAffine(template, xform, dstShape,

borderValue=255)

# Compute the correlation image for this (rotation, scale) pair

c = cv.matchTemplate(img, t, cv.TM_CCOEFF_NORMED)
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# Ensure that correlation image has the same size as img

h = [floor((img.shape[k] - c.shape[k]) / 2) for k in range(2)]

cpad = np.zeros(img.shape)

cpad[h[0]:(h[0]+c.shape[0]), h[1]:(h[1]+c.shape[1])] = c

# Accumulate the maximum correlation at every pixel

cmax = np.maximum(cmax, cpad)

# Find peak regions in cmax

peak = (255 * (cmax > corrThreshold)).astype(np.uint8)

image, contours, hierarchy = cv.findContours(peak, cv.RETR_CCOMP,

cv.CHAIN_APPROX_NONE)

# Retain centroids of the peak regions that are large enough and

# contain a dark enough pixel

areas = [cv.contourArea(c) for c in contours]

ok = []

for area, contour in zip(areas, contours):

if area >= minArea:

m = cv.moments(contour)

centroid = (int(m['m01']/m['m00']), int(m['m10']/m['m00']))

if isDark(img, centroid, maxValue):

ok.append((contour, area, centroid))

# Repackage centroids into a numpy array of (row, column) coordinates

centroids = np.array([[item[2][1], item[2][0]] for item in ok])

return centroids, cmax
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