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As a refresher of prerequisite materials, Section 1 characterizes the existence and multiplicity
of the solutions of a linear system in terms of the four fundamental spaces associated with the
system’s matrix and of the relationship of the right-hand side vector of the system to that subspace.
Additional useful facts from linear algebra, including a definition of the four spaces and of the notion
of orthogonal matrices, are collected in the Appendices for easy reference. Some of the Appendices
also prove several of the results stated in this note.

As usual, Appendices are optional reading. However, the non-proof materials in the Appendices
to this note are course prerequisites, so you are expected to know them.

Moving to a possibly new topic, Section 2 introduces the all-important concept of the Singular
Value Decomposition (SVD). Sections 3 and 4 then show how to use the SVD to solve linear systems
in the sense of least squares.

1 The Solutions of a Linear System

Let
Ax = b

be an m× n system (m can be less than, equal to, or greater than n). Also, let

r = rank(A)

be the number of linearly independent rows or columns of A. Then,1

b 6∈ range(A) ⇒ no solutions
b ∈ range(A) ⇒ ∞n−r solutions

with the convention that∞0 = 1. Here,∞k is the cardinality of a k-dimensional affine vector space
on the reals.

In the first case above, there can be no linear combination of the columns (no x vector) that
gives b, and the system is said to be incompatible. In the second, compatible case, three possibilities
occur, depending on the relative sizes of r,m, n:

• When r = n = m, the system is invertible. This means that there is exactly one x that
satisfies the system, since the columns of A span all of Rn. Notice that invertibility depends
only on A, not on b.

1Here and elsewhere, the range of a matrix is synonymous to its column space. Appendix A recalls the definitions
of the four fundamental spaces associated with a linear transformation.
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Figure 1: Types of linear systems.

• When r = n and m > n, the system is redundant. There are more equations than unknowns,
but since b is in the range of A there is a linear combination of the columns (a vector x) that
produces b. In other words, the equations are compatible, and exactly one solution exists.2

• When r < n the system is underdetermined. This means that the null space is nontrivial (i.e.,
it has dimension h > 0), and there is a linear space of dimension h = n− r of vectors x such
that Ax = 0. Since b is assumed to be in the range of A, there are solutions x to Ax = b,
but then for any y ∈ null(A) also x + y is a solution:

Ax = b , Ay = 0 ⇒ A(x + y) = b

and this generates the ∞h =∞n−r solutions mentioned above.

Notice that if r = n then n cannot possibly exceed m (or else the columns of A would form an
n-dimensional subspace of an m-dimensional space with m < n, an impossibility), so the first two
cases exhaust the possibilities for r = n. Also, r cannot exceed either m or n. All the cases are
summarized in figure 1.

Thus, a linear system has either zero (incompatible), one (invertible or redundant), or more
(underdetermined) solutions. In all cases, we can say that the set of solutions forms an affine space,
that is, a linear space L plus a vector:

A = x̂ + L .

Recall that the sum here means that the single vector x̂ is added to every vector of the linear space
L to produce the affine space A. For instance, if L is a plane through the origin (recall that all
linear spaces must contain the origin), then A is a plane (not necessarily through the origin) that
is parallel to L.

In the underdetermined case, the geometric nature of A is obvious. However, the notation used
above for affine spaces also applies to the incompatible case: in this case, L is the empty linear
space, so x̂ + L is empty as well, and x̂ is undetermined.

2Notice that the technical meaning of “redundant” has a stronger meaning than “with more equations than
unknowns.” The case r < n < m is possible, has more equations (m) than unknowns (n), admits a solution if
b ∈ range(A), but is called “underdetermined” because there are fewer (r) independent equations than there are
unknowns (see next item). Thus, “redundant” means “with exactly one solution and with more equations than
unknowns.”
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Please do not confuse the empty linear space (a space with no elements) with the linear space
that contains only the zero vector (a space with one element). The latter yields either the invertible
or the redundant case.

Of course, listing all possibilities does not provide an operational method for determining the
type of linear system for a given pair A,b. Section 2 introduces the Singular Value decomposition
(SVD), a fundamental tool of linear algebra. The two subsequent Sections use the SVD to show how
to determine the type of a system, and how to solve it. They also give meaning to the expression
“solving the system” when no exact solution exists, which occurs most of the time in practice.
Section 4, in particular, defines a concept of “solution” that is typically useful and interesting in
the case b = 0, when the exact solution is trivial and uninteresting.

2 The Singular Value Decomposition

Here is the main intuition captured by the Singular Value Decomposition (SVD) of a matrix:

An m×n matrix A of rank r maps the r-dimensional unit hypersphere in row space(A)
into an r-dimensional hyperellipse in range(A).

Thus, a hypersphere is stretched or compressed into a hyperellipse, which is a quadratic hyper-
surface that generalizes the two-dimensional notion of ellipse to an arbitrary number of dimensions.
In three dimensions, the hyperellipse is an ellipsoid, in one dimension it is a pair of points. In all
cases, the hyperellipse in question is centered at the origin.

For instance, the rank-2 matrix

A =
1√
2

 √3
√

3
−3 3
1 1

 (1)

transforms the unit circle on the plane into an ellipse embedded in three-dimensional space. Figure
2 shows the map

b = Ax .

There are two diametrically opposite points v1 and −v1 on the unit circle that are mapped
into the two endpoints σ1u1 and −σ1u1 of the major axis of the ellipse. Similarly, two other
diametrically opposite points v2 and −v2 on the unit circle are mapped into the two endpoints
σ2u2 and −σ2u2 of the minor axis of the ellipse. The lines through these two pairs of points on
the unit circle are always orthogonal to each other. This result can be generalized to any m × n
matrix.

Simple and fundamental as this geometric fact may be, its proof by geometric means is cum-
bersome. It is, on the other hand, a straightforward consequence of the following fundamental
theorem, proven in the Appendix, which states the existence of the SVD.

Theorem 2.1. If A is a real m× n matrix then there exist orthogonal matrices

U =
[
u1 · · · um

]
∈ Rm×m

V =
[
v1 · · · vn

]
∈ Rn×n

such that
UTAV = Σ = diag(σ1, . . . , σp) ∈ Rm×n
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Figure 2: The matrix in equation (1) maps a circle on the plane into an ellipse in space. The two
small boxes are corresponding points.

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

The columns of V are the right singular vectors of A, and those of U are its left singular vectors.
The diagonal entries of Σ are the singular values of A. The ratio

κ(A) = σ1/σp (2)

is the condition number of A, and is possibly infinite.
The singular value decomposition is “almost unique”. There are two sources of ambiguity. The

first is in the orientation of the singular vectors. By rewriting the equation A = UΣV T in the
following form,

A =
n∑

i=1

σiuiv
T
i ,

we see that one can flip (change the sign of) any right singular vector vi, provided that the
corresponding left singular vector ui is flipped as well, and still obtain a valid SVD. Singular
vectors must be flipped in pairs (a left vector and its corresponding right vector) because the
singular values are required to be nonnegative. This is a trivial ambiguity. If desired, it can be
removed by imposing, for instance, that the first nonzero entry of every left singular value be
positive.

The second source of ambiguity is deeper. If the matrix A maps a hypersphere into another
hypersphere, that is, a hyper-ellipsoid with equally long axes, then the axes of the latter are not
uniquely defined. For instance, the identity matrix has an infinity of SVDs, all of the form

I = UIUT
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where U is any orthogonal matrix of suitable size. More generally, whenever two or more singular
values coincide, the subspaces identified by the corresponding left and right singular vectors are
unique, but any orthonormal basis can be chosen within, say, the right subspace and yield, together
with the corresponding left singular vectors, a valid SVD. Except for these ambiguities, the SVD
is unique.

Even in the general case, the singular values of a matrix A are the lengths of the semi-axes of
the hyperellipse E defined by

E = {Ax : ‖x‖ = 1} .

The SVD reveals a great deal about the structure of a matrix. If we define r by

σ1 ≥ . . . ≥ σr > σr+1 = . . . = 0 ,

that is, if σr is the smallest nonzero singular value of A, then

rank(A) = r

and the singular vectors provide orthogonal bases for the four fundamental spaces of A:

null(A) = span{vr+1, . . . ,vn}
range(A) = span{u1, . . . ,ur}

row space(A) = span{v1, . . . ,vr}
left null(A) = span{ur+1, . . . ,un} .

The sizes of the matrices in the SVD are as follows: U is m×m, Σ is m× n, and V is n× n.
Thus, Σ has the same shape and size as A, while U and V are square. However, if m > n, the
bottom (m− n)× n block of Σ is zero, so that the last m− n columns of U are multiplied by zero.
Similarly, if m < n, the rightmost m× (n−m) block of Σ is zero, and this multiplies the last n−m
rows of V . This suggests a “small,” equivalent version of the SVD. If p = min(m,n), we can define
Up = U(:, 1 : p), Σp = Σ(1 : p, 1 : p), and Vp = V (:, 1 : p), and write

A = UpΣpV
T
p

where Up is m× p, Σp is p× p, and Vp is n× p.
Moreover, if p− r singular values are zero, we can let Ur = U(:, 1 : r), Σr = Σ(1 : r, 1 : r), and

Vr = V (:, 1 : r), then we have

A = UrΣrV
T
r =

r∑
i=1

σiuiv
T
i ,

which is an even smaller, minimal, SVD (also known as the tiny SVD).
Finally, both the Frobenius norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

and the 2-norm

‖A‖2 = sup
x 6=0

‖Ax‖
‖x‖

(3)
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of the matrix A are neatly characterized in terms of the SVD:

‖A‖F =
√
σ21 + . . .+ σ2p

‖A‖2 = σ1 .

The Golub-Reinsch Algorithm The SVD was established by Eugenio Beltrami in 1873 [1].
Interestingly, he did not use matrix notation in his formulation or derivation. The SVD became one
of the main tools in numerical linear algebra after 1970, when Gene Golub and Christian Reinsch
published a numerically stable and efficient algorithm for its computation [3] based on an earlier
version by Golub and Kahan [2].

The Golub-Reinsch algorithm works by repeatedly multiplying A by orthogonal matrices from
the left and from the right. Since orthogonal matrices do not change the magnitudes of vectors,
these multiplications do not amplify the numerical errors that derive from the use of finite-precision
arithmetic. This fact is the reason for the stability of the algorithm.

3 The Pseudoinverse

One of the most important applications of the SVD is the solution of linear systems in the least
squares sense. A linear system of the form

Ax = b (4)

arising from a real-life application may or may not admit a solution, that is, a vector x that
satisfies this equation exactly. Often more measurements are available than strictly necessary,
because measurements are unreliable. This leads to more equations than unknowns (the number
m of rows in A is greater than the number n of columns), and equations are often mutually
incompatible because they come from inexact measurements. Even when m ≤ n the equations can
be incompatible, because of errors in the measurements that produce the entries of A. In these
cases, it makes more sense to find a vector x that minimizes the norm

‖Ax− b‖

of the residual vector
r = Ax− b

where the double bars henceforth refer to the Euclidean norm. Thus, x cannot exactly satisfy
any of the m equations in the system, but it tries to satisfy all of them as closely as possible, as
measured by the sum of the squares of the discrepancies between left- and right-hand sides of the
equations.

In other circumstances, not enough measurements are available. Then, the linear system (4) is
under-determined, in the sense that it has fewer independent equations than unknowns (its rank r
is less than n).

Incompatibility and under-determinacy can occur together: the system admits no solution, and
the least-squares solution is not unique. For instance, the system

x1 + x2 = 1

x1 + x2 = 3

x3 = 2
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has three unknowns, but rank 2, and its first two equations are incompatible: x1 + x2 cannot be
equal to both 1 and 3. A least-squares solution turns out to be x = [1 1 2]T with residual

r = Ax− b =

 1 1 0
1 1 0
0 0 1

 1
1
2

−
 1

3
2

 =

 2
2
2

−
 1

3
2

 =

 1
−1

0

 ,

which has norm
√

2 (admittedly, this is a rather high residual, but this is the best we can do for
this problem, in the least-squares sense). However, any other vector of the form

x′ =

 1
1
2

+ α

 −1
1
0


is as good as x. For instance, x′ = [0 2 2], obtained for α = 1, yields exactly the same residual as
x (check this).

In summary, an exact solution to the system (4) may not exist, or may not be unique. An
approximate solution, in the least-squares sense, always exists, but may fail to be unique.

If there are several least-squares solutions, all equally good (or bad), then one of them turns out
to be shorter than all the others, that is, its norm ‖x‖ is smallest. One can therefore redefine what it
means to “solve” a linear system so that there is always exactly one solution. This minimum-norm
solution is the subject of the following theorem, which both establishes uniqueness and provides a
recipe for the computation of the solution. The theorem is proven in an Appendix.

Theorem 3.1. The minimum-norm least-squares solution to a linear system Ax = b, that is, the
shortest vector x that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UTb (5)

where A = UΣV T is the SVD of the rank-r matrix A and

Σ† =



1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .

0 0 · · · 0


.

The matrix
A† = V Σ†UT

is called the pseudoinverse of A. The pseudo-inverse Σ† of Σ is spelled out above in the case in
which the m×n matrix A has no fewer rows than columns (m ≥ n). Regardless of the relative size
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of m and n, the matrix Σ is m× n (the same size of A) and the pseudo-inverse Σ† of Σ is n×m.
When m < n, there are extra zero rows in Σ†, rather than extra zero columns:

Σ† =



1/σ1
. . .

1/σr
0

. . .

0
0 · · · 0
...

...
0 · · · 0


.

4 Least-Squares Solution of a Homogeneous Linear Systems

Theorem 3.1 holds regardless of the value of the right-hand side vector b. When b = 0, that is,
when the system is homogeneous, the solution is trivial: the minimum-norm solution to

Ax = 0 (6)

is
x = 0 ,

which happens to be an exact solution. Of course it is not necessarily the only solution (any vector
in the null space of A is also a solution, by definition), but it is obviously the one with the smallest
norm.

Thus, x = 0 is the unique minimum-norm solution to any homogeneous linear system. Although
correct, this solution is not too interesting. In many applications, what is desired is a nonzero vector
x that satisfies the system (6) as well as possible. Without any constraints on x, we would fall
back to x = 0 again. For homogeneous linear systems, the meaning of a least-squares solution is
therefore usually modified, once more, by imposing the constraint

‖x‖ = 1

on the solution. Unfortunately, the resulting constrained minimization problem does not necessarily
admit a unique solution. The following theorem provides a recipe for finding this solution, and shows
that there is in general a whole hypersphere of solutions.

Theorem 4.1. Let
A = UΣV T

be the singular value decomposition of the m × n matrix A, and let r = rank(A). Furthermore,
define

i =

{
r + 1 if r < n
min {j | 1 ≤ j ≤ n and σj = σn} otherwise.

In words, if A has a nontrivial null space, then i indexes the first column of V in the orthogonal
basis of the null space of A. Otherwise, i indexes the first column of V whose corresponding singular
value σi is equal to the smallest (and last) singular value σn.
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Then, all vectors of the form
x = α1vi + . . .+ αkvn

with
k = n− i+ 1 and α2

1 + . . .+ α2
k = 1

are unit-norm least-squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

When r = n, the last singular value σn of A is nonzero, and it is very unlikely that other singular
values have exactly the same numerical value as σn. Because of this, the most common case when
r = n is n = i and therefore k = 1. When r < n, on the other hand, the matrix A may often have
more than one singular value equal to zero. Either way, if k = 1, then the minimum-norm solution
is unique, x = vn. If k > 1, then x = vn is still a unit-norm least-squares solution. To summarize,
while the theorem above shows how to express all solutions as a linear combination of the last k
columns of V , the following weaker result holds as well, and is of significant practical importance.

Corollary 4.2. Let
A = UΣV T

be the singular value decomposition of the m × n matrix A, and let r = rank(A). Then, the last
column of V ,

x = vn

is a (possibly not unique) unit-norm least-squares solutions to the homogeneous linear system

Ax = 0,

that is
min
‖x‖=1

‖Ax‖ = ‖Avn‖ = σn .

In this expression, σn is the last singular value of A, and is equal to zero when r < n.
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Appendices

A Linear Transformations

Linear transformations map spaces into spaces. It is important to understand exactly what is being
mapped into what in order to determine whether a linear system has solutions, and if so how many.

Two vector spaces A and B are said to be orthogonal to one another when every vector in A
is orthogonal to every vector in B. If vector space A is a subspace of Rm for some m, then the
orthogonal complement of A is the set of all vectors in Rm that are orthogonal to all the vectors in
A.

Notice that complement and orthogonal complement are very different notions. For instance,
the complement of the xy plane in R3 is all of R3 except the xy plane, while the orthogonal
complement of the xy plane is the z axis.

Results in this Appendix are given without proof, and more details on orthogonal matrices are
recalled in Appendix B.

Theorem A.1. If A is a subspace of Rm and A⊥ is the orthogonal complement of A in Rm, then

dim(A) + dim(A⊥) = m .

We can now start to talk about matrices in terms of the subspaces associated with them. The
null space null(A) of an m×n matrix A is the space of all n-dimensional vectors that are orthogonal
to the rows of A. The range of A is the space of all m-dimensional vectors that are generated by
the columns of A. Thus, x ∈ null(A) iff Ax = 0, and b ∈ range(A) iff Ax = b for some x. This
can be restated into the following immediate but very important statement:

Theorem A.2. The matrix A transforms a vector x in its null space into the zero vector, and an
arbitrary vector x into a vector in range(A).

The spaces orthogonal to null(A) and range(A) occur frequently enough to deserve names of
their own. The space range(A)⊥ is called the left nullspace of the matrix, and null(A)⊥ is called
the rowspace of A. A frequently used synonym for “range” is column space. It should be obvious
from the meaning of these spaces that

null(A)⊥ = range(AT )

range(A)⊥ = null(AT )

where AT is the transpose of A, defined as the matrix obtained by exchanging the rows of A with
its columns.

In summary, four spaces are associated with an m× n matrix A:

range(A);
null(A);
range(A)⊥ = left null(A);
null(A)⊥ = row space(A) .
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In order to count solutions to a linear system, it is important to establish how the dimensions
of these spaces relate to each other. From theorem A.1, if null(A) has dimension h, then the space
generated by the rows of A has dimension r = n − h, that is, A has n − h linearly independent
rows. It is not obvious that the space generated by the columns of A has also dimension r = n−h.
Even more strongly, the following theorem holds:

Theorem A.3. The matrix A establishes a one-to-one mapping between row space(A) and range(A).

Thus, the two linear vector spaces row space(A) and range(A) are isomorphic to each other,
and therefore have equal dimension. In summary, if we define

r = dim(range(A))
h = dim(null(A))

then theorems A.1 and A.3 yield the following:

dim(left null(A)) = dim(range(A)⊥) = m− r
dim(row space(A)) = dim(null(A)⊥) = n− h = r .

This also implies the following result:

Corollary A.4. The number r of linearly independent columns of any m× n matrix A is equal to
the number of its independent rows.

As a result, we can define the rank of A to be equivalently the number of linearly independent
columns or of linearly independent rows of A:

r = rank(A) = dim(range(A)) = n− dim(null(A)) = n− h .

Note that if Ax = b, then for any vector y ∈ null(A) we also have A(x + y) = Ax + Ay = Ax
because Ay = 0. Therefore, the matrix A maps vectors in Rn that differ only by a vector in null(A)
to the same point. Since row space(A) is isomorphic to range(A), it is then convenient to take each
point xr of row space(A) as a representative of the affine space

A(xr) = xr + null(A)

of points that all map to the single point Axr. The sum in the expression above means that the
single vector xr is added to every vector of the linear space null(A) to produce the affine space
A(xr).

The foregoing discussion allows forming the picture of a linear mapping shown in figure 3.
As a brief aside, the picture of the isomorphism between the two linear spaces row space(A)

and range(A) can be made stronger by observing that A also transforms any basis for row space(A)
into a basis for range(A). This is not immediately obvious, since if v1, . . . ,vr are a basis for
row space(A) then Av1, . . . , Avr might conceivably be dependent, or fail to span all of range(A).
However, this is not so:

Theorem A.5. If the vectors v1, . . . ,vr are a basis for row space(A), then the vectors Av1, . . . , Avr

are a basis for range(A).
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Figure 3: An m×n matrix A maps all of Rn to range(A) (top arrow), and null(A) to zero (bottom
arrow). The row space and range of A are isomorphic to each other (i.e., in 1-1 correspondence),
and for each point xr ∈ row space(A) there is an affine space xr + null(A) of dimension h =
dim(null(A)) = n− rank(A) that maps (dotted arrow) to the single point Axr.

B More on Orthogonal Matrices

Let S be an n-dimensional subspace of Rm (so that we necessarily have n ≤ m), and let v1, . . . ,vn

be an orthonormal basis for S. Consider a point P in S. If the coordinates of P in Rm are collected
in an m-dimensional vector

p =

 p1
...
pm

 ,

and since P is in S, it must be possible to write p as a linear combination of the vjs. In other
words, there must exist coefficients

q =

 q1
...
qn


such that

p = q1v1 + . . .+ qnvn = V q

where
V =

[
v1 · · · vn

]
is an m× n matrix that collects the basis for S as its columns. Then for any i = 1, . . . , n we have

vT
i p = vT

i

n∑
j=1

qjvj =
n∑

j=1

qjv
T
i vj = qi ,
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since the vj are orthonormal. This is important, and may need emphasis:

If

p =
n∑

j=1

qjvj

and the vectors of the basis v1, . . . ,vn are orthonormal, then the coefficients qj are
the signed magnitudes of the projections of p onto the basis vectors:

qj = vT
j p . (7)

In matrix form,
q = V Tp . (8)

Also, we can collect the n2 equations

vT
i vj =

{
1 if i = j
0 otherwise

into the following matrix equation:
V TV = I (9)

where I is the n×n identity matrix. A matrix V that satisfies equation (9) is said to be orthogonal.
Thus, a matrix is orthogonal if its columns are orthonormal. Since the left inverse of a matrix V
is defined as the matrix L such that

LV = I , (10)

comparison with equation (9) shows that the left inverse of an orthogonal matrix V exists, and is
equal to the transpose of V .

Of course, this argument requires V to be full rank, so that the solution L to equation (10) is
unique. However, V is certainly full rank, because it is made of orthonormal columns.

Notice that V R = I cannot possibly have a solution when m > n, because the m×m identity
matrix has m linearly independent 3 columns, while the columns of V R are linear combinations of
the n columns of V , so V R can have at most n linearly independent columns.

This result is obiously still valid when V is m×m and has orthonormal columns, since equation
(9) still holds. However, for square, full-rank matrices (r = m = n), the distinction between left and
right inverse vanishes. To see this, let L and R be the left and right inverse of a square, full-rank
matrix A:

LA = I and AR = I .

Then, we can write

L = LI = L(AR) = (LA)R = IR = R so that L = R

as promised. Thus, if V is orthogonal and square, equation (9) yields

V V T = V TV = I .

Since the matrix V V T contains the inner products between the rows of V (just as V TV is
formed by the inner products of its columns), the argument above shows that the rows of a square
orthogonal matrix are orthonormal as well. We can summarize this discussion as follows:

3Nay, orthonormal.
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Theorem B.1. The left inverse of an orthogonal m× n matrix V with m ≥ n exists and is equal
to the transpose of V :

V TV = I .

In particular, if m = n, the matrix V −1 = V T is also the right inverse of V :

V square ⇒ V −1V = V TV = V V −1 = V V T = I .

Sometimes, when m = n, the geometric interpretation of equation (8) causes confusion, because
two interpretations of it are possible. In the interpretation given above, the point P remains the
same, and the underlying reference frame is changed from the elementary vectors ej (that is, from
the columns of I) to the vectors vj (that is, to the columns of V ). Alternatively, equation (8)
can be seen as a transformation, in a fixed reference system, of point P with coordinates p into a
different point Q with coordinates q. This, however, is relativity, and should not be surprising: If
you spin clockwise on your feet, or if you stand still and the whole universe spins counterclockwise
around you, the result is the same.4

Consistently with either of these geometric interpretations, we have the following result:

Theorem B.2. The norm of a vector x is not changed by multiplication by an orthogonal matrix
V :

‖V x‖ = ‖x‖ .

The proof is a one-liner, so it is included here:

‖V x‖2 = xTV TV x = xTx = ‖x‖2 .

We conclude this section with an obvious but useful consequence of orthogonality. First, define
the projection p of a point b ∈ Rn onto a subspace C as the point in C that is closest to b. The
following theorem, proven in the Appendix, shows how to project a point onto the range of an
orthogonal matrix, and how the point and its projection relate to each other.

Theorem B.3. Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto
range(U). Furthermore, the difference vector between b and its projection p onto range(U) is
orthogonal to range(U):

UT (b− p) = 0 .

C Proofs

Theorem B.3

Let U be an orthogonal matrix. Then the matrix UUT projects any vector b onto range(U).
Furthermore, the difference vector between b and its projection p onto range(U) is orthogonal to
range(U):

UT (b− p) = 0 .

4At least geometrically. One solution may be more efficient than the other in other ways.
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Proof. A point p in range(U) is a linear combination of the columns of U :

p = Ux

where x is the vector of coefficients (as many coefficients as there are columns in U). The squared
distance between b and p is

‖b− p‖2 = (b− p)T (b− p) = bTb + pTp− 2bTp = bTb + xTUTUx− 2bTUx .

Because of orthogonality, UTU is the identity matrix, so

‖b− p‖2 = bTb + xTx− 2bTUx .

The derivative of this squared distance with respect to x is the vector

2x− 2UTb

which is zero iff
x = UTb ,

that is, when
p = Ux = UUTb

as promised.
For this value of p the difference vector b− p is orthogonal to range(U), in the sense that

UT (b− p) = UT (b− UUTb) = UTb− UTb = 0 .

Theorem 2.1

If A is a real m× n matrix then there exist orthogonal matrices

U =
[
u1 · · · um

]
∈ Rm×m

V =
[
v1 · · · vn

]
∈ Rn×n

such that
UTAV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

Proof. Let x and y be unit vectors in Rn and Rm, respectively, and consider the bilinear form

z = yTAx .

The set
S = {x, y | x ∈ Rn, y ∈ Rm, ‖x‖ = ‖y‖ = 1}
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is compact, so that the scalar function z(x,y) must achieve a maximum value on S, possibly at
more than one point 5. Let u1, v1 be two unit vectors in Rm and Rn respectively where this
maximum is achieved, and let σ1 be the corresponding value of z:

max
‖x‖=‖y‖=1

yTAx = uT
1Av1 = σ1 .

It is easy to see that u1 is parallel to the vector Av1. If this were not the case, their inner product
uT
1Av1 could be increased by rotating u1 towards the direction of Av1, thereby contradicting the

fact that uT
1Av1 is a maximum. Similarly, by noticing that

uT
1Av1 = vT

1 A
Tu1

and repeating the argument above, we see that v1 is parallel to ATu1.
The vectors u1 and v1 can be extended into orthonormal bases for Rm and Rn, respectively.

Collect these orthonormal basis vectors into orthogonal matrices U1 and V1. Then

UT
1 AV1 = S1 =

[
σ1 0T

0 A1

]
.

In fact, the first column of AV1 is Av1 = σ1u1, so the first entry of UT
1 AV1 is uT

1 σ1u1 = σ1,
and its other entries are uT

j Av1 = 0 because Av1 is parallel to u1 and therefore orthogonal, by
construction, to u2, . . . ,um. A similar argument shows that the entries after the first in the first
row of S1 are zero: the row vector uT

1A is parallel to vT
1 , and therefore orthogonal to v2, . . . ,vn,

so that uT
1Av2 = . . . = uT

1Avn = 0.
The matrix A1 has one fewer row and column than A. We can repeat the same construction

on A1 and write

UT
2 A1V2 = S2 =

[
σ2 0T

0 A2

]
so that [

1 0T

0 UT
2

]
UT
1 AV1

[
1 0T

0 V2

]
=

 σ1 0 0T

0 σ2 0T

0 0 A2

 .

This procedure can be repeated until Ak vanishes (zero rows or zero columns) to obtain

UTAV = Σ

where UT and V are orthogonal matrices obtained by multiplying together all the orthogonal
matrices used in the procedure, and

Σ = diag(σ1, . . . , σp) .

Since matrices U and V are orthogonal, we can premultiply the matrix product in the theorem by
U and postmultiply it by V T to obtain

A = UΣV T ,

5Actually, at least at two points: if uT
1 Av1 is a maximum, so is (−u1)TA(−v1).
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which is the desired result.
It only remains to show that the elements on the diagonal of Σ are nonnegative and arranged

in nonincreasing order. To see that σ1 ≥ . . . ≥ σp (where p = min(m,n)), we can observe that the
successive maximization problems that yield σ1, . . . , σp are performed on a sequence of sets each of
which contains the next. To show this, we just need to show that σ2 ≤ σ1, and induction will do
the rest. We have

σ2 = max
‖x̂‖=‖ŷ‖=1

ŷTA1x̂ = max
‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
S1

[
0
x̂

]
= max

‖x̂‖=‖ŷ‖=1

[
0 ŷ

]T
UT
1 AV1

[
0
x̂

]
= max

‖x‖ = ‖y‖ = 1
xTv1 = yTu1 = 0

yTAx ≤ σ1 .

To explain the last equality above, consider the vectors

x = V1

[
0
x̂

]
and y = U1

[
0
ŷ

]
.

The vector x is equal to the unit vector [0 x̂]T transformed by the orthogonal matrix V1, and is
therefore itself a unit vector. In addition, it is a linear combination of v2, . . . ,vn, and is therefore
orthogonal to v1. A similar argument shows that y is a unit vector orthogonal to u1. Because x
and y thus defined belong to subsets (actually sub-spheres) of the unit spheres in Rn and Rm, we
conclude that σ2 ≤ σ1.

The σi are nonnegative because all these maximizations are performed on unit hyper-spheres.
The σis are maxima of the function z(x,y) which always assumes both positive and negative values
on any hyper-sphere: If z(x,y) is negative, then z(−x,y) is positive, and if x is on a hyper-sphere,
so is −x.

Theorem 3.1

The minimum-norm least-squares solution to a linear system Ax = b, that is, the shortest vector
x that achieves the

min
x
‖Ax− b‖ ,

is unique, and is given by
x̂ = V Σ†UTb (11)

where A = UΣV T is the SVD of the rank-r matrix A and

Σ† =



1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .

0 0 · · · 0


.
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Proof. The minimum-norm least-squares solution to

Ax = b

is the shortest vector x that minimizes
‖Ax− b‖

that is,
‖UΣV Tx− b‖ .

This can be written as
‖U(ΣV Tx− UTb)‖ (12)

because U is an orthogonal matrix, UUT = I. But orthogonal matrices do not change the norm of
vectors they are applied to, so that the last expression above equals

‖ΣV Tx− UTb‖

or, with y = V Tx and c = UTb,
‖Σy − c‖ .

In order to find the solution to this minimization problem, let us spell out the last expression. We
want to minimize the norm of the following vector:

σ1 0 · · · 0

0
. . . · · · 0

σr
... 0

...
. . .

0 0





y1
...
yr
yr+1

...
yn


−



c1
...
cr
cr+1

...
cm


.

The last m− r differences are of the form

0−

 cr+1
...
cm


and do not depend on the unknown y. In other words, there is nothing we can do about those
differences: if some or all the ci for i = r + 1, . . . ,m are nonzero, we will not be able to zero
these differences, and each of them contributes a residual |ci| to the solution. Each of the first r
differences, on the other hand, can be zeroed exactly by letting yi = ci/σi for the i-th difference.
In addition, in these first r differences, the last n − r components of y are multiplied by zeros, so
they have no effect on the solution. Thus, there is freedom in their choice. Since we look for the
minimum-norm solution, that is, for the shortest vector x, we also want the shortest y, because
x and y are related by an orthogonal transformation. We therefore set yr+1 = . . . = yn = 0. In
summary, the desired y has the following components:

yi =
ci
σi

for i = 1, . . . , r

yi = 0 for i = r + 1, . . . , n .
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When written as a function of the vector c, this is

y = Σ+c .

Notice that there is no other choice for y, which is therefore unique: minimum residual forces the
choice of y1, . . . , yr, and minimum-norm solution forces the other entries of y. Thus, the minimum-
norm, least-squares solution to the original system is the unique vector

x = V y = V Σ+c = V Σ+UTb

as promised. The residual, that is, the norm of ‖Ax−b‖ when x is the solution vector, is the norm
of Σy − c, since this vector is related to Ax − b by an orthogonal transformation (see equation
(12)). In conclusion, the square of the residual is

‖Ax− b‖2 = ‖Σy − c‖2 =
m∑

i=r+1

c2i =
m∑

i=r+1

(uT
i b)2

which is the projection of the right-hand side vector b onto the left null space of A.

Theorem 4.1

Let
A = UΣV T

be the singular value decomposition of the m × n matrix A, and let r = rank(A). Furthermore,
define

i =

{
r + 1 if r < n
min {j | 1 ≤ j ≤ n and σj = σn} otherwise.

In words, if A has a nontrivial null space, then i indexes the first column of V in the orthogonal
basis of the null space of A. Otherwise, i indexes the first column of V whose corresponding singular
value σi is equal to the smallest (and last) singular value σn.

Then, all vectors of the form
x = α1vi + . . .+ αkvn

with
k = n− i+ 1 and α2

1 + . . .+ α2
k = 1

are unit-norm least-squares solutions to the homogeneous linear system

Ax = 0,

that is, they achieve the
min
‖x‖=1

‖Ax‖ .

Proof. The reasoning is similar to that for the previous theorem. The unit-norm least-squares
solution to

Ax = 0
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is the vector x with ‖x‖ = 1 that minimizes

‖Ax‖

that is,
‖UΣV Tx‖ .

Since orthogonal matrices do not change the norm of vectors they are applied to, this norm is the
same as

‖ΣV Tx‖

or, with y = V Tx,
‖Σy‖ .

Since V is orthogonal, ‖x‖ = 1 translates to ‖y‖ = 1. We thus look for the unit-norm vector y
that minimizes the norm (squared) of Σy, that is,

σ21y
2
1 + . . .+ σ2ny

2
n .

This is obviously achieved by concentrating all the (unit) mass of y where the σs are smallest, that
is by letting

y1 = . . . = yi−1 = 0. (13)

From y = V Tx we obtain x = V y = y1v1 + . . .+ ynvn, so that equation (13) is equivalent to

x = α1vi + . . .+ αkvn

with α1 = yi, . . . , αk = yn, and the unit-norm constraint on y yields

α2
1 + . . .+ α2

k = 1 .
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