
Deep Networks for Image-to-Image Prediction

Carlo Tomasi

March 2, 2021

1 Introduction

Early applications of deep networks in computer vision focused on object recognition. Recognition
networks take an image as input and output a category, or a score for each of a set of predefined
categories. As a consequence, recognition networks have the structure of a funnel: They are large
at the input and small at the output, since the number of categories is always much smaller than
the number of pixels in the input image.

Some more recent uses of deep networks address the estimation of image-like quantities instead.
For instance, an image motion estimation network takes two frames as input and outputs a motion
field. In principle, the motion field has two numbers (the two components of image motion) for
each pixel in the input frame pair.1

As a consequence, the output of a motion estimation network is also image-like, in the sense
that the quantities it estimates are in the form of an image with two values per pixel. Information of
this type is sometimes called retinotopic, in that the output quantities are associated to individual
points of the input (the “retina”).

Another example of an image-to-image estimation problem is image segmentation, which assigns
a category to each pixel of the input. For instance, the input could be a satellite image, and the
pixel categories could be building, vegetation, road, water, and so forth. This is still a retinotopic
output, and the value at each pixel is either a label or a one-hot encoding of it.

Both motion analysis and segmentation are image-to-image estimation tasks, even if the format
or number of input and output images is different in the two cases. However, segmentation is a
classification task, while motion estimation is a regression task. As we know, the difference between
regression and classification, which can be quite substantive for many machine learning algorithm, is
rather minor for deep networks from an architectural standpoint, and the main difference concerns
loss functions.

For pedagogical continuity with previous notes, the next Section outlines a prototypical archi-
tecture used for image motion estimation. This architecture looks like an hourglass rather than a
funnel: It starts large, it funnels down to a relatively narrow bottleneck, and broadens out again
through a reverse funnel. The bottleneck is meant to force the network to compute abstract rep-
resentations of the input. This so-called encoder-decoder architecture would by itself be unable to
maintain a retinotopic representation, since the bottleneck effectively obliterates resolution. Skip

1In practice, because of both storage and computation time limitations, the outputs of image-to-image neural
networks are often at a somewhat lower resolution than the inputs, perhaps by a factor of 2 or 4. This restriction is
likely to be lifted as hardware becomes faster and less expensive.

1

connections are then added that connect layers in the decoder funnel to layers in the encoder at
the same resolution.

Since the second funnel goes from small to large feature maps, it requires ways to increase
resolution, which is often done through an operation called up-convolution. Section 2 describes this
operation in some detail.

Section 3 then briefly overviews encoder-decoder architecture for image segmentation. The
architectural considerations are quite similar to those for motion estimation, so this Section is
brief. However, it presents an opportunity to discuss the issue of class imbalance that arises when
the distribution of class labels in a training set is uneven. This issue arises also in classification
problems other than segmentation.

2 Networks for Image Motion Estimation

The input of an image motion2 estimation network is typically a pair of consecutive frames out of
a video sequence. While common, this input format is also very restrictive, as it focuses on a very
small period of time, in which the distinction between image changes caused by motion and those
caused by image noise, compression, or other artifacts is often small. Estimating image motion
from more than two frames, or even in a recurrent fashion from video of unbounded length, is a
promising direction for research, and is not discussed in this note.

Loss Training an image motion estimation network aims at reducing a risk function that measures
the average End-Point Error (EPE), that is, the discrepancy between the true motion field v(x)
and the motion field u(x) computed by the network. To this end, each training sample is a pair of
image frames f(x), g(x) out of a video sequence and the true motion field v(x) between them, for
which the following relationship holds under ideal circumstances3

g(x + v(x)) = f(x) . (1)

This equation is the finite (as opposed to differential) version of the Brightness Change Constraint
Equation: The same point in the world looks the same in the two frames.

The EPE is typically defined as the average Euclidean distance between u and v over the
(discrete) image domain Ω:

1

|Ω|
∑
x∈Ω

‖u(x)− v(x)‖2 . (2)

Training Data The cost of annotating data sets for image motion estimation is high, because
annotation involves specifying the true motion field at every pixel for each pair of frames in the
training set. This is a fundamental difficulty, and not just an issue of labor expense, because the
aperture problem makes it hard to even know what the true motion field v is at a particular pixel.

A promising method for addressing this difficulty is to use Computer Graphics (CG) to generate
synthetic video sequences. GC can generate very realistic scenes and motions, and the perceptual
differences between animated graphics and real-world video is rapidly shrinking. If anything, CG

2As usual, the literature uses the terms “motion field” and “optical flow” interchangeably.
3We assume again, for pedagogical simplicity, that the images are black-and-white.

2

images are often of higher quality than real-world video, but then it is not too hard to make images
look worse (that is, more realistic) by image processing methods!

A key advantage of CG data is that the true image motion can be inferred from knowledge of
the 3D models, motion models, and camera models used in the rendering process. Several artificial
data sets with ground-truth image motion annotation are available, including the so-called Sintel [2]
and Flying Chairs [3] datasets.

One aspect that makes annotating for image motion easier than for, say, image recognition is
that for the latter task each image is a training sample, while for image motion estimation virtually
every pixel (or at least every small image neighborhood) is a training sample. Therefore, annotating
a single pair of images amounts to providing hundreds of thousands or even millions of training
samples.

An intriguing possibility explored in recent literature [9] is to use unsupervised methods to
train a deep network for image motion estimation. These methods still require video data, but
they require no annotation, and are explored in Appendix 3.

2.1 Supervised Image Motion Estimation

Standard classification tasks in computer vision differ from the regression task of image motion
estimation also in the format and size of the output: The required output motion field has ideally
the same resolution as the input image (one motion vector per pixel, rather than one or a few labels
per image). This factor has far-reaching consequences on the architecture of the networks used for
motion field estimation, as discussed next.

The output of a classification network is a class label, and the number of possible labels is
typically much smaller than—and otherwise unrelated to—the number of image pixels. More
importantly, the choice of label often depends on large portions of the input image, if not on all of
it. As a consequence, typical classification networks have smaller and smaller layers as one moves
away from the input. Units in each layer have larger and larger receptive fields, and subsequent
layers boil down image information into more and more concise representations. The last layers
in the network have all but “forgotten” the detailed topology of the image, and instead encode
abstract aspects of the image that are related to the distinctions between different class labels.

Thus, a classification network looks somewhat like a funnel, wide and retinotopic at the input
and narrow and abstract at the output. This narrowing, sometimes called a contraction, is achieved
by pooling (max pooling or average pooling) or strided convolutions.

In a motion-estimation network, on the other hand, the output has about the same height
and width as the input, although it may have a different number of channels: two channels for
the output and either two (two black-and-white frames) or six (two color frames) channels for the
input. As a consequence, the network cannot be a funnel.

However, the abstraction performed by narrowing layers is still useful in motion-estimation
networks, because the wider receptive fields in units in deeper layers may be able to see the correct
motions better than a narrower field would. For instance, the detail of a tree’s canopy in the
red square in Figure 1 contains a largely repetitive texture. At testing time, the network may
accordingly be unable to determine which of the several plausible displacements is the correct
one. When matching two images of the larger detail in the yellow square in the same Figure, on
the other hand, a smaller number of displacements may be consistent with the brightness pattern
contained in the two images. In other words, the aperture problem is less of a problem when
the aperture is larger. Coarser-resolution images may lead to coarse motion fields with high bias

3

Figure 1: A small (red) and larger (yellow) detail of a tree’s canopy.

(because of coarseness) and low variance (because of the comparatively large amount of data used),
and images at finer resolutions may be able to refine these fields locally and improve resolution
without increasing variance too much.

One way to resolve the tension between the need for abstraction and the need to preserve
resolution is to concatenate two neural networks: The first network is the contracting stage, or
encoder, and the second, called the expanding stage, or decoder, progressively increases resolution
back up to input resolution. An example architecture of this type is shown in Figure 2, and is
known as the FlowNet architecture [3].4

The expansion could be achieved by bilinear interpolation, but this would be a fixed expansion,
that is, its parameters would not be learned. Instead, the goal is to make the expansion flexible
and let the network optimize its parameters during learning. This can be achieved by an operation
called up-convolution, described next.

Up-Convolution The operation of up-convolution is most easily understood for signals in one
dimension, and all the concepts involved extend immediately to multiple dimensions. Consider the
strided convolution of signal f(x) with a kernel k(x) that has p elements:

g(y) =

p−1∑
x=0

k(x)f(sy − x) . (3)

4The FlowNet paper also describes a more complex architecture where two separate deep networks constrained
to have the same parameters (“siamese” networks) process the two input frames independently before their outputs
are merged through a correlation network into a so-called loss volume, and are then processed together with a third
network. Experiments show that the added complexity does not improve performance significantly.

4

FlowNet: Learning Optical Flow with Convolutional Networks

Alexey Dosovitskiy∗, Philipp Fischer†∗, Eddy Ilg∗, Philip Häusser, Caner Hazırbaş, Vladimir Golkov†

University of Freiburg Technical University of Munich
{fischer,dosovits,ilg}@cs.uni-freiburg.de, {haeusser,hazirbas,golkov}@cs.tum.edu

Patrick van der Smagt
Technical University of Munich

smagt@brml.org

Daniel Cremers
Technical University of Munich

cremers@tum.de

Thomas Brox
University of Freiburg

brox@cs.uni-freiburg.de

Abstract

Convolutional neural networks (CNNs) have recently
been very successful in a variety of computer vision tasks,
especially on those linked to recognition. Optical flow esti-
mation has not been among the tasks CNNs succeeded at. In
this paper we construct CNNs which are capable of solving
the optical flow estimation problem as a supervised learning
task. We propose and compare two architectures: a generic
architecture and another one including a layer that cor-
relates feature vectors at different image locations. Since
existing ground truth data sets are not sufficiently large to
train a CNN, we generate a large synthetic Flying Chairs
dataset. We show that networks trained on this unrealistic
data still generalize very well to existing datasets such as
Sintel and KITTI, achieving competitive accuracy at frame
rates of 5 to 10 fps.

1. Introduction
Convolutional neural networks have become the method

of choice in many fields of computer vision. They are clas-
sically applied to classification [25, 24], but recently pre-
sented architectures also allow for per-pixel predictions like
semantic segmentation [28] or depth estimation from single
images [10]. In this paper, we propose training CNNs end-
to-end to learn predicting the optical flow field from a pair
of images.

While optical flow estimation needs precise per-pixel lo-
calization, it also requires finding correspondences between
two input images. This involves not only learning image
feature representations, but also learning to match them at
different locations in the two images. In this respect, optical
flow estimation fundamentally differs from previous appli-
cations of CNNs.

∗These authors contributed equally
†Supported by the Deutsche Telekom Stiftung

Figure 1. We present neural networks which learn to estimate op-
tical flow, being trained end-to-end. The information is first spa-
tially compressed in a contractive part of the network and then
refined in an expanding part.

Since it was not clear whether this task could be solved
with a standard CNN architecture, we additionally devel-
oped an architecture with a correlation layer that explicitly
provides matching capabilities. This architecture is trained
end-to-end. The idea is to exploit the ability of convolu-
tional networks to learn strong features at multiple levels of
scale and abstraction and to help it with finding the actual
correspondences based on these features. The layers on top
of the correlation layer learn how to predict flow from these
matches. Surprisingly, helping the network this way is not
necessary and even the raw network can learn to predict op-
tical flow with competitive accuracy.

Training a network to predict generic optical flow re-
quires a sufficiently large training set. Although data aug-
mentation does help, the existing optical flow datasets are
still too small to train a network on par with state of the art.
Getting optical flow ground truth for realistic video material
is known to be extremely difficult [7]. Trading in realism

12758

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the
expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training
computationally feasible and, more fundamentally, to allow
aggregation of information over large areas of the input im-
ages. But pooling results in reduced resolution, so in order
to provide dense per-pixel predictions we need to refine the
coarse pooled representation. To this end our networks con-
tain an expanding part which intelligently refines the flow to
high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.
Architectures we use are depicted in Figures 2 and 3. We
now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input
images together and feed them through a rather generic net-
work, allowing the network to decide itself how to process
the image pair to extract the motion information. This is il-
lustrated in Fig. 2 (top). We call this architecture consisting
only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical
processing streams for the two images and to combine them
at a later stage as shown in Fig. 2 (bottom). With this ar-
chitecture the network is constrained to first produce mean-
ingful representations of the two images separately and then
combine them on a higher level. This roughly resembles the
standard matching approach when one first extracts features
from patches of both images and then compares those fea-
ture vectors. However, given feature representations of two
images, how would the network find correspondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer

2760

(a) (b)

Figure 2. The two network architectures: FlowNetSimple (top) and FlowNetCorr (bottom). The green funnel is a placeholder for the
expanding refinement part shown in Fig 3. The networks including the refinement part are trained end-to-end.

Figure 3. Refinement of the coarse feature maps to the high reso-
lution prediction.

3. Network Architectures

Convolutional neural networks are known to be very
good at learning input–output relations given enough la-
beled data. We therefore take an end-to-end learning ap-
proach to predicting optical flow: given a dataset consisting
of image pairs and ground truth flows, we train a network
to predict the x–y flow fields directly from the images. But
what is a good architecture for this purpose?

Pooling in CNNs is necessary to make network training
computationally feasible and, more fundamentally, to allow
aggregation of information over large areas of the input im-
ages. But pooling results in reduced resolution, so in order
to provide dense per-pixel predictions we need to refine the
coarse pooled representation. To this end our networks con-
tain an expanding part which intelligently refines the flow to
high resolution. Networks consisting of contracting and ex-

panding parts are trained as a whole using backpropagation.
Architectures we use are depicted in Figures 2 and 3. We
now describe the two parts of networks in more detail.

Contracting part. A simple choice is to stack both input
images together and feed them through a rather generic net-
work, allowing the network to decide itself how to process
the image pair to extract the motion information. This is il-
lustrated in Fig. 2 (top). We call this architecture consisting
only of convolutional layers ‘FlowNetSimple’.

Another approach is to create two separate, yet identical
processing streams for the two images and to combine them
at a later stage as shown in Fig. 2 (bottom). With this ar-
chitecture the network is constrained to first produce mean-
ingful representations of the two images separately and then
combine them on a higher level. This roughly resembles the
standard matching approach when one first extracts features
from patches of both images and then compares those fea-
ture vectors. However, given feature representations of two
images, how would the network find correspondences?

To aid the network in this matching process, we intro-
duce a ‘correlation layer’ that performs multiplicative patch
comparisons between two feature maps. An illustration
of the network architecture ‘FlowNetCorr’ containing this
layer is shown in Fig. 2 (bottom). Given two multi-channel
feature maps f1, f2 : R2 → Rc, with w, h, and c being their
width, height and number of channels, our correlation layer

2760

(c)

Figure 2: (a) The overall shape of the architecture of FlowNet. The expanding stage shown in
detail in (b) is represented by the green truncated cone in (c), which shows the contracting stage
in detail. Figures are from [3].

In this expression, s is the stride of the convolution, a positive integer. Since the convolution is
linear, it can be written in matrix form as

g = Kf (4)

where f and g are column vectors that collect all the values of f and g, respectively. If f has m
elements and g has n, then K is n×m.

As an example, consider a stride-2 convolution in the ‘same’ format, with m = 12. Then, the
output of the stride-1 convolution would have length n = m. Since m is even and the stride is
s = 2 instead, the output g has length n = m/2 = 6, and K is a 6 × 12 matrix. As a result, this
convolution decreases resolution by half.

Let the kernel k have length p = 5, and let its elements be [a, b, c, d, e]. Then,

K =

c b a
e d c b a

e d c b a
e d c b a

e d c b a
e d c b

 .

The corresponding up-convolution is defined to be the convolution with matrix representation

ϕ = KTg . (5)

5

A symbol other than f is used on the left-hand side of this expression, because KT is not the inverse
of K, so one does not get f back with this product.

This discussion could stop here: An up-convolution is exactly a transformation that can be
written in the form of equation 5, just as a (strided) convolution is a transformation that can be
written in the form of equation 4. Note that the transformation 5 takes an input with m values
and produces an output with n values. In other words, while a strided convolution (with stride
s > 1) reduces resolution, an up-convolution (with stride s > 1) increases it.

However, neither expression is computationally efficient. For illustration, we picked an example
with a small value of n. In practice, n, the number of pixels in one dimension of the input image,
will be much bigger than p, the number of kernel coefficients in that dimension. Thus, in practice,
the matrix K (or KT) will contain mostly zeros. While convolution implemented through equation
3 requires O(pn/s) operations, expression 4 requires O(n2/s), a much bigger number since n� p.
Because of this, we now describe a way to write up-convolution more efficiently as well, with an
expression that has the flavor of equation 3.

To understand the structure of up-convolution, let us rewrite the matrix KT as a table and
mark each column with the entry of g that it multiplies in the matrix product KTg:

g0 g1 g2 g3 g4 g5

c e

b d

a c e

b d

a c e

b d

a c e

b d

a c e

b d

a c

b

The structure of this table becomes more immediately apparent if zeros are inserted after each
sample of g. If the stride is s, insert s− 1 zeros. Thus, replace g with the vector γ whose entry at
position y is

γ(y) =

{
g
(y
s

)
if y

s
= 0

0 otherwise
for 0 ≤ y ≤ sn . (6)

Here and elsewhere, a
c
= b means that a and b are equal modulo c, so that y

s
= 0 means that y is

divisible by s. The transformation from g to γ is called a dilution by a factor s. After dilution,

6

the table has sn columns rather than n (12 rather than 6 in the example) and is square:

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11

g0 0 g1 0 g2 0 g3 0 g4 0 g5 0

c e

b d

a c e

b d

a c e

b d

a c e

b d

a c e

b d

a c

b

Since entries in the empty columns of this table multiply zeros in γ, we can put anything we like
in them. In particular, we can fill the table as follows:

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11

g0 0 g1 0 g2 0 g3 0 g4 0 g5 0

c d e

b c d e

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

a b c d

a b c

This is the matrix for a ‘same’-format correlation with k(y), that is, a convolution with the reverse
of k,

κ(y)
def
= k(p− 1− y) ,

and can be written as follows:

φ(x) =

p−1∑
y=0

κ(y)γ(x− y) . (7)

In summary:

The up-convolution by factor s of signal g(y) with kernel κ(y) is the convolution of the
s-diluted version of g(y) with κ(y).

7

Since the matrix corresponding to up-convolution by factor s is the transpose of a convolution
matrix, up-convolution is sometimes also called transposed convolution.5

What matters in the definition of up-convolution is its format, not the values in κ: In a neural
network, the coefficients of κ are learned, and all we know is that there is some stride-s convolution
kernel (namely, k(y) = κ(p− 1− y)) from which the up-convolution could be derived as described
above.

Of course, the description of up-convolution as a convolution of a diluted signal is merely
conceptual. Computationally, it would be wasteful to first dilute the signal and then perform all
the multiplications, including the ones by zeros. The efficient way to compute up-convolution is
obtained by replacing the definition 6 of dilution into the expression 7 for convolution to obtain

φ(x) =

p−1∑
y

s
=x, y=0

κ(y) g

(
x− y
s

)
.

With this implementation, each sample of φ requires approximately p/s multiplications, since the
condition y

s
= x retains one every s terms in the summation, namely, those for which the argument

of g is an integer.
Since sampling and dilution are separable operations (that is, they can be applied dimension-

wise to a multidimensional signal), the discussion above generalizes immediately to images or
signals with even higher-dimensional domains, and to vector-valued signals. The dilution factors
in different dimensions can be different (although they rarely are in the literature).

Skip Links Up-convolution increases resolution, but it does so only formally, rather than sub-
stantively, as there is no way to recreate the retinotopic information that was lost in the encoder
through convolutions with stride greater than 1. Because of this, motion field results obtained
with a network whose expanding stage has only up-convolution layers tend to be coarse: While the
output has as many motion field vectors as each of the input frames has pixels, the motion field
map is blurred, with nearby vectors being more similar to each other than in the ground truth, and
with poorly localized discontinuities.

To address this issue, so-called skip links are added to the network. These links are represented
by gray arrows in Figure 2. Each link copies the activation map at the output of a convolutional
layer in the contracting stage to the output of the layer in the expanding stage that has the same
resolution. This activation is concatenated in the channel dimension to the expanding layer’s
activation, as shown in Figure 2 (b). In this way, the substantively low-resolution information
output by the expanding layer is aggregated with the substantively high-resolution information
from the corresponding contracting layer, and the (substantive) resolution of the output motion
field map is significantly improved.

Performance As shown in the original paper [3], FlowNet does slightly better (6-8 pixels of End-
Point Error, EPE) than the classical (that is, pre-deep-learning) method by Brox et al. [1] (7-9 EPE)
on standard benchmark sets. FlowNet does not do quite as well as other image motion estimation
methods based on neural networks, such as EpicFlow [10] or DeepFlow [12], which achieve EPEs
around 4-5 pixels, or even more recent networks, which do almost twice as well [6, 11]. However,

5Up-convolution is sometimes also called “deconvolution.” This is a misnomer, however, because this term denotes
something else altogether in signal processing.

8

the latter approaches are rather complex compared to FlowNet, and it seems pedagogically more
useful to examine the potential of the deep-learning approach in a simple form.

3 Networks for Image Segmentation

Encoder-decoder networks are the workhorses of image segmentation as well. The architecture is
very similar, save for the obvious differences at the input and output: One image instead of two at
the input, and a label score map at the output.

A label score map is a stack of arrays with the same spatial resolution (number of rows and
columns) as the input image and one channel per label. If the input image has h rows (“height”)
and w columns (“width”), and there are K labels, then the label score map is a h× w ×K array
p(r, c, k) and the K values for each r and c are the outputs of a soft-max function. Therefore,

p(r, c, k) > 0 and

K−1∑
k=0

p(r, c, k) = 1 .

The map is a bit simpler when K = 2: In that case, we would have p(r, c, 0) = 1 − p(r, c, 1),
so only p(r, c, 1) is typically output. Class 1 is the class of interest (for instance, “building” in a
satellite image) and class 0 stands for “everything else.” The score p(r, c, 1) is then for a positive
detection, and the array of all scores is often called a heat map.

Loss Since segmentation is a (pixel-wise) classification problem, the cross-entropy loss is appro-
priate at every pixel, and losses over the entire image are averaged to return a per-image loss.

In some segmentation problems, the distribution across classes can be very uneven. For instance,
a building segmentation system deployed on sparsely populated areas may have very few building
pixels. As a consequence of this class imbalance, the trivial predictor that classifies every pixel as
“non-building” would achieve very low risk and very high accuracy even with the 0-1 loss measure.
Because of this, the training algorithm is likely to return a predictor that is similar to the trivial
one. In terms of back-propagation, the feedback signal provided by the few positive examples of
buildings is too weak for good training, and there are too many local minima in the risk function
that correspond to near-trivial predictors.

The focal loss was introduced to address this problem [5]. Instead of the straight cross-entropy
loss,

`xe(y,p) = − log py

the focal loss is
`f(y,p) = αy(1− py)γ`xe(y,p) .

In this expression, y is the true label, α0, . . . , αK−1 are positive coefficients that add up to 1, and
γ is a real number greater than 1.

The weighting terms αy and (1 − py)
γ have separate functions. Specifically, αk is set to be

inversely proportional to class frequency: The smaller class k is, the greater the corresponding αk.
If there are nk pixels in class k, set α̃k = 1/nk and then normalize to unit sum:

αk =
α̃k∑K−1
j=0 α̃j

.

9

0.0 0.2 0.4 0.6 0.8 1.0
py

0.0

0.2

0.4

0.6

0.8

1.0

(1
p y

)

= 1.0
= 1.5
= 2.0
= 3.0

Figure 3: The function (1− py)γ for a few values of γ ≥ 1.

The effect of these coefficients is to boost the loss for more sparsely represented classes.
Since 0 < py < 1 and γ > 1, the function (1−py)γ is decreasing and convex, as shown in Figure

3. The effect of this term is then to emphasize training samples with small scores py over those with
larger scores. Large-score samples are those the classifier finds easy to classify: They are correctly
classified and well away from the decision boundary. As a result, the focal loss effectively ignores
most of the uncontroversial, correctly classified samples and focuses on the hard ones. These are
samples that are either incorrectly classified or classified correctly but with a small margin.6

A trivial classifier would misclassify all samples in sparsely represented classes, while many
samples in the more populated classes are likely to be uncontroversial. Because of this, use of the
focal loss keeps the training algorithm well away from trivial classifiers, and the ill effects of class
imbalance are thereby reduced.

Class-imbalance is not specific to segmentation, and the focal loss is often used also in other
classification problems.

Training Data Labeling images for segmentation is easier than labeling image pairs for motion
estimation. For instance, satellite images can be labeled with some user interface that allows
dragging rectangles over buildings or, for more complex shapes, draw polygons around them. Images
labeled via crowd-sourcing are therefore typically used to train image segmentation systems.

Performance One of the earlier systems for image segmentation to use deep learning methods
is by Noh et al. [8] and uses a now-classic encoder-decoder architecture. Many improvements have
been proposed since, in large part to improve on the resolution of the results, which tended to be
somewhat blurry in early systems. A survey examines progress in the area in the years 2015-2020 [7].

6The margin of a sample is some measure of its distance from the decision boundary.

10

Appendix: Unsupervised Image Motion Estimation

The key difficulty in learning to achieve a small value for the End-Point Error (EPE) defined in
expression 2 is to determine the true motion field v at every pixel x of each training image pair.
In other words, annotation is expensive. An intriguing alternative explored recently [9] is to use
equation 1 as a starting point instead. Specifically, one could define a reprojection error

g(x + u(x))− f(x)

that measures the discrepancy between the value image f takes at pixel x and the prediction
g(x+u(x)) that could be made of that value assuming that constancy of appearance holds between
the two frames. Note that u, the computed motion field, was replaced for v in this difference: We
are interested in how good our guess of the motion field is, not how good the true motion field is.

While the EPE in expression 2 is (the norm of) the difference between two motion field vectors,
the reprojection error is the difference between the color (or brightness level) of f at x and the color
of g at the point that x moves to in the time between frame f and frame g. Thus, the reprojection
error provides some information on how good the computed motion field u at x is.

The square of the reprojection error is essentially the same as the color loss `c used in variational
methods for image motion estimation [1]. If constancy of appearance holds, and if image noise is
modest, then guessing the correct motion field at x, that is, letting

u(x) = v(x) ,

would make the reprojection error small, and one could use this loss (averaged over the whole image
domain) for training a deep network.

However, the reprojection error provides rather indirect information about the quality of u. In
particular, because of the aperture problem, there is often a whole family of motion fields that yield
the same reprojection error. Thus, while a good motion field estimate typically yields a small loss,
the converse is not true: A small loss could be achieved with very wrong estimates of the motion
field, as long as its normal component is correct. In addition, violations of constancy of appearance
make the reprojection nonzero even with perfect u and noiseless images.

The solution is then to augment the loss with appropriate regularization terms. Let us then use
for training the loss

L(u)
def
=
∑
x∈Ω

`(x,u(x), D(u(x)))

where
`(x,u, D)

def
= `c(x,u) + λg`g(u) + λs`s(D)

and where

`c(x,u)
def
= ψ(‖g(x + u)− f(x)‖2)

`g(x,u)
def
= ψ

(∥∥∥∥∂g(x + u)

∂xT
− ∂f(x)

∂xT

∥∥∥∥2
)

`s(D)
def
= ψ

(
‖D‖2

)
.

Recall that x is image position, u is the computed motion field, f and g are the two frames, D is
the Jacobian matrix of u, and

ψ(s2)
def
=
√
s2 + ε2

11

is the Charbonnier loss measure. The nonnegative regularization parameters λg, λs are either given
or chosen by cross-validation.

The loss ` just defined is the same used in the variational approach, except for the absence of
the term `µ that measures the mismatch between the motion field u and the values of motion field
measured by a separate method at a sparse set of image locations. We saw in Section 2.1 that
neural networks have other means to handle large motions.

The idea of unsupervised image motion estimation [9] is to build a deep neural network φ that
takes two image frames f and g and an image location x and computes an estimate u(x) of the
image motion between the two frames at u:

u(x) = φ(x, f, g) .

The parameters of φ are learned by using back-propagation to minimize the average loss L(u) over
the training set. The only training set needed for this is a set of frame pairs (f, g), and these are
very easy to collect. No annotation is needed.

Three important questions arise at this point:

• What is an appropriate architecture for φ?

• Can a differentiable function be found that, given an image g and a motion field u, computes
the new image

γ(x)
def
= g(x + u(x)) ? (8)

This function must be differentiable because it is part of a deep network, which needs to be
trained by back-propagation.

• Does the loss ` constrain the solution well enough, so that the network φ trained in this
unsupervised way yields good estimates of the motion field u?

The last question above will be answered empirically: Train a network on a training set (without
annotations), and test it on a test set (for which annotations are of course necessary, in order to
measure performance).

The answer to the first question can be found in Section 2.1: FlowNet was proven adequate to
compute a motion field from a pair of video frames. In computing the motion field values u(x),
FlowNet acts as a localization network, in that it computes the locations where g needs to be
sampled to produce γ. The computation of the grid points points

w
def
= x + u(x) , (9)

whose coordinates are real-valued, is called grid generation.7

The answer to the second question above is rather straightforward: We saw earlier in the
course that bilinear interpolation can be used to sample an image g at a grid of points w. The
transformation that computes γ from g in the definition 8 is therefore a simple application of
bilinear interpolation, and its implementation for every x ∈ Ω is often called a sampling network.
To recall, if w = (w1, w2) and

ω1 = bw1c and ω2 = bw2c (10)

7It seems excessive to assign two different names to computing u and then w. This is done in order to establish
a correspondence with the components of so-called Spatial Transformer Networks [4], which are sometimes more
complex than they are here.

12

are the integer parts of w1 and w2, and

δ1 = max(0, w1 − ω1) and δ2 = max(0, w2 − ω2)

are their fractional parts, then

γ(x) = g(w) = g(ω1, ω2)(1− δ1)(1− δ2)

+ g(ω1 + 1, ω2)δ1(1− δ2)

+ g(ω1, ω2 + 1)(1− δ1)δ2

+ g(ω1 + 1, ω2 + 1)δ1δ2

where γ(x) is allowed to be real-valued as well. All the functions in this definition are differentiable,
except for the floor functions in equations 10, which are discontinuous. However, the functions δi
for i = 1, 2 are continuous and piecewise linear in wi with discontinuous derivative at wi = ωi.
Each of these functions is an affine function of wi followed by a ReLU function. As a consequence,
the discontinuous derivative can be handled with the same techniques used to handle the ReLU in
back-propagation.8

Spatial Transformer Networks Thus, to compute g(x+u(x)) one needs a localization network
(FlowNet, to compute the motion field u), followed by a grid generator (to compute the grid of
sampling points w), followed by a sampling network (bilinear interpolation applied to every point
of the sampling grid to compute γ). This cascade is called a Spatial Transformer Network (STN).
STNs were initially introduced in the context of image recognition [4], in order to make object
representations invariant to certain geometric transformations, but as we see they have found use
in image motion estimation as well.

A key property of STNs is that they are made of sub-differentiable functions9, and can therefore
be trained by back-propagation, either by themselves or as part of a bigger network. Estimating
image motion may be viewed as the problem of learning the parameters of the localization network of
an STN, which is in turn one component of a motion field computation network. The architecture
of the full network, called a Dense Spatial Transform Flow (DSTFlow) network [9] is shown in
Figure 4.

Performance and Research Questions The endpoint errors for the motion-field estimates
produced by a DSTFlow network were shown to be about twice what they are for FlowNet [9]
when trained on the same set of video frame pairs. However, training a DSTFlow network requires
no data annotation, while training a FlowNet needs a full ground-truth motion field for each training
sample!

Thus, the notion of unsupervised training of image-motion estimation networks seems to be
rather appealing. Since training data is much easier to gather for DSTFlow, it is worth experi-
menting to see if training such a network on a much bigger dataset produces significantly better
results. This has not been attempted at the time of this writing. Working with data sets that
are several orders of magnitude bigger than the current ones may still require carefully curated
video data, to make sure that frame pairs used for training are related by simple image motion,

8Specifically, one computes the sub-gradient rather than the gradient. This is a minor technical point, and is
beyond the scope of these notes.

9Functions with a sub-gradient everywhere.

13

Unsupervised Deep Learning
for Optical Flow Estimation

Zhe Ren,1 Junchi Yan,2,3∗ Bingbing Ni,1 Bin Liu,4 Xiaokang Yang,1 Hongyuan Zha5

1Shanghai Jiao Tong University 2East China Normal University 3IBM Research 4Moshanghua Tech 5Georgia Tech
{sunshinezhe,nibingbing,xkyang}@sjtu.edu.cn, {jcyan,zha}@sei.ecnu.edu.cn, liubin@dress-plus.com, zha@cc.gatech.edu

Abstract
Recent work has shown that optical flow estimation can be
formulated as a supervised learning problem. Moreover, con-
volutional networks have been successfully applied to this
task. However, supervised flow learning is obfuscated by the
shortage of labeled training data. As a consequence, exist-
ing methods have to turn to large synthetic datasets for easily
computer generated ground truth. In this work, we explore if
a deep network for flow estimation can be trained without su-
pervision. Using image warping by the estimated flow, we de-
vise a simple yet effective unsupervised method for learning
optical flow, by directly minimizing photometric consistency.
We demonstrate that a flow network can be trained from end-
to-end using our unsupervised scheme. In some cases, our re-
sults come tantalizingly close to the performance of methods
trained with full supervision.

Introduction
Massive amounts of digital videos are generated every
minute. This has posed new challenges for effective video
analytics. Estimating pixel-level motions, also known as op-
tical flow, is a basic building block for early-stage video
analysis. Optical flow is a classic problem in computer vi-
sion and has many real-world applications, including au-
tonomous driving, video segmentation and video semantic
understanding (Menze and Geiger 2015). However, accurate
estimation of optical flow remains a challenging problem
(Sun, Roth, and Black 2014; Butler et al. 2012).

Deep learning has drastically advanced all frontiers of
AI, in particular computer vision. We have witnessed a cor-
nucopia of Convolutional Neural Networks (CNN) achiev-
ing superior performance in a large array of computer vi-
sion tasks, including image denoising, image segmentation
and object recognition. Several recent advances also al-
low for pixel-wise predictions like semantic segmentation
(Long, Shelhamer, and Darrell 2015) and trajectory anal-
ysis (Lin et al. 2017). However, the ravenous appetite to

∗Correspondence author. This research was supported by The
National Key Research and Development Program of China
(2016YFB1001003), NSFC (61602176, 61672231, 61527804,
61521062), STCSM (15JC1401700, 14XD1402100), China Post-
doctoral Science Foundation Funded Project (2016M590337), the
111 Program (B07022) and NSF (IIS-1639792, DMS-1620345).
Copyright c⃝ 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The presented network architectures of our Dense
Spatial Transform Flow (DSTFlow) network that consists of
three key components: localization layer based on a similar
structure of flowNet, sampling layer based on dense spatial
transform which is realized by a bilinear interpolation layer
in this paper and the final loss layer. All the layer weights
are learned end-to-end through backpropagation.

labeled data becomes the main limitation of deep learn-
ing methods. This is even pronounced for the problem ad-
dressed in this paper: optical flow estimation that needs
dense labels with per-pixel motion between two consecutive
frames. Getting such optical flow ground-truth for realistic
videos is extremely challenging (Butler et al. 2012). Hence
state-of-the-art deep learning methods (Fischer et al. 2015;
Mayer et al. 2016) turn to synthetically labeled dataset, by-
passing the tedious and difficult pixel-level labeling step. A
crowd-sourcing based study (Altwaijry et al. 2016) shows
that human participants are mainly relying on the global ap-
pearance cues for perceiving motion and human are less at-
tentive to the fine-grained pixel-level correspondences.

Is pixel-level supervision indispensable for learning opti-
cal flow? Recent work on learning from video has shown
that via some quality control, effective feature represen-
tation (Wang and Gupta 2015; Li et al. 2016) and even
cross-instance key-point matching (Zhou et al. 2016) can
be obtained by unsupervised or semi-supervised learning.
Another observation is that the human brain bears a vi-
sual short-term memory (VSTM) module (Hollingworth
2004), which is mainly responsible for understanding visual
changes, and an infant without any teaching by the age of
2.5 months is able to discern occlusion, containment, and

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1495

Figure 4: The architecture of a DSTFlow network. The localization “layer” is a FlowNet. The Data
term Loss is `c(x,u) + λg`g(u) and the Smooth term Loss is λs`s(D). All the parameters of the
DSTFlow network are learned end-to-end by back-propagation. There are no learnable parameters
in the sampling layer. Figure is from [9].

as opposed to scene transitions, dramatic lighting changes, or other un-modeled changes. It is also
possible that improving performance enough to match that of supervised methods may call for new
training methods that are more tolerant of the more indirect supervisory signal provided by the
reprojection error, when compared with the more direct endpoint error that can be computed from
ground-truth motion fields.

References

[1] T. Brox and J. Malik. Large displacement optical flow. In IEEE International Conference on
Computer Vision and Pattern Recognition, pages 41–48, 2009.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A naturalistic open source movie for
optical flow evaluation. In European Conference on Computer Vision, Part IV, LNCS 7577,
pages 611–625. Springer-Verlag, 2012.

[3] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt,
D. Cremers, and T. Brox. FlowNet: Learning optical flow with convolutional networks. In
Proceedings of the IEEE International Conference on Computer Vision, pages 2758–2766, 2015.

[4] M. Jaderberg, K. Simonyan, and A. Zisserman. Spatial transformer networks. In Advances in
Neural Information Processing Systems, pages 2017–2025, 2015.

[5] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision,
pages 2980–2988, 2017.

14

[6] P. Liu, M. Lyu, I. King, and J. Xu. Selflow: Self-supervised learning of optical flow. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4571–
4580, 2019.

[7] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and
Demetri Terzopoulos. Image segmentation using deep learning: A survey. arXiv preprint
arXiv:2001.05566, 2020.

[8] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for
semantic segmentation. In Proceedings of the IEEE international conference on computer
vision, pages 1520–1528, 2015.

[9] Z. Ren, J. Yan, B. Ni, B. Liu, X. Yang, and H. Zha. Unsupervised deep learning for optical
flow estimation. In AAAI, pages 1495–1501, 2017.

[10] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-preserving interpo-
lation of correspondences for optical flow. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1164–1172, 2015.

[11] Z. Teed and J. Deng. RAFT: Recurrent all-pairs field transforms for optical flow. In European
Conference on Computer Vision, pages 402–419. Springer, 2020.

[12] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: Large displacement
optical flow with deep matching. In IEEE International Conference onComputer Vision, pages
1385–1392, 2013.

15

	Introduction
	Networks for Image Motion Estimation
	Supervised Image Motion Estimation

	Networks for Image Segmentation

