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This note starts with a quick refresher of the geometry of rigid transformations in three-dimensional
space, expressed in Cartesian coordinates. It then introduces a simple model for a camera, which relates
coordinates of points in the world to coordinates of the projections of these points on the image plane. This
relation will later let us develop a method for reconstructing the three-dimensional geometry of a scene from
two images of it.

1 Rigid Geometric Transformations

A rigid geometric transformation is a change between orthogonal Cartesian reference systems. We will
attach one such system to each camera, or to a single camera as it moves around, and we need to be able
to transform coordinates of world points between the reference systems. Since the reference systems are
orthogonal, the next few subsections recall the main concepts of coordinates, orthogonality, orthogonal
projection1, and cross and triple products of vectors. This will hopefully just be a refresher for you. If you
are rusty on the concepts please also look at the proofs in the Appendix. While appendices are optional
reading, understanding some of the proofs (they are all easy) may make it easier for you to remember
concepts.

1.1 Cartesian Coordinates

Let us assume the notions of the distance between two points and the angle between lines to be known from
geometry. The law of cosines is also stated without proof2: if a, b, c are the sides of a triangle and the angle
between a and b is θ, then

c2 = a2 + b2 − 2ab cos θ .

The special case for θ = π/2 radians is known as Pythagoras’ theorem.
The definitions that follow focus on three-dimensional space. Two-dimensional geometry can be derived

as a special case when the third coordinate of every point is set to zero.
A Cartesian reference system for three-dimensional space is a point in space called the origin and three

mutually perpendicular, directed lines though the origin called the axes. The order in which the axes are
listed is fixed, and is part of the definition of the reference system. The plane that contains the second and

1Please note that we talk about orthogonal projection here, and about perspective projection when we model cameras. These are
two different projections.

2A proof based on trigonometry is straightforward but tedious, and a useful exercise.

1



third axis is the first reference plane. The plane that contains the third and first axis is the second reference
plane. The plane that contains the first and second axis is the third reference plane.

It is customary to mark the axis directions by specifying a point on each axis and at unit distance from the
origin in the direction chosen as positive. These points are called the unit points of the system. A Cartesian
reference system is right-handed if the smallest rotation that brings the first unit point to the second is
counterclockwise when viewed from the third unit point. The system is left-handed otherwise.

The Cartesian coordinates of a point in three-dimensional space are the signed distances of the point
from the first, second, and third reference plane, in this order, and are often collected into a vector. The
sign for coordinate i is positive if the point is in the half-space (delimited by the i-th reference plane) that
contains the unit point of the i-th reference axis. It follows that the Cartesian coordinates of the origin are
t = (0, 0, 0)T , those of the unit points are the vectors ex = (1, 0, 0)T , ey = (0, 1, 0)T , and ez = (0, 0, 1)T ,
and the vector p = (x, y, z)T of coordinates of an arbitrary point in space can also be written as follows:

p = xex + yey + zez .

The point p can be reached from the origin t by the following polygonal path:

t , xex , xex + yey , p .

Each segment of the path is followed by a right-angle turn, so Pythagoras’ theorem can be applied twice to
yield the distance of p from the origin:

d(t,p) =
√
x2 + y2 + z2 .

From the definition of norm of a vector we see that

d(t,p) = ‖p‖ .

So the norm of the vector of coordinates of a point is the distance of the point from the origin. A vector is
often drawn as an arrow pointing from the origin to the point whose coordinates are the components of the
vector. Then, the result above shows that the length of that arrow is the norm of the vector. Because of this,
the words “length” and “norm” are often used interchangeably.

1.2 Orthogonality

The law of cosines yields a geometric interpretation of the inner product of two vectors a and b:

Theorem 1.1.
aTb = ‖a‖ ‖b‖ cos θ

where θ is the acute angle between the two arrows that represent a and b geometrically.

So the inner product of two vectors is the product of the lengths of the two arrows that represent them
and of the cosine of the angle between them. See Appendix 2 for a proof.

Setting θ = π/2 in the result above, that is, making a and b perpendicular, yields another important
corollary:

Corollary 1.2. The arrows that represent two vectors a and b are mutually perpendicular if an only if the
two vectors are orthogonal:

aTb = 0 .

Because of this result, the words “perpendicular” and “orthogonal” are often used interchangeably. Note
that “perpendicular” is a geometric property of two vectors, while “orthogonal” is an algebraic relationship
involving their Cartesian coordinates.
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1.3 Orthogonal Projection

Given two vectors a and b, the orthogonal projection of a onto b is the vector p that represents the point p
on the line through b that is nearest to the endpoint of a. See Figure 1.

p
b

a

Figure 1: The vector from the origin to point p is the orthogonal projection of a onto b. The line from the
endpoint of a to p is orthogonal to b.

Theorem 1.3. The orthogonal projection of a onto b is the vector

p = Pba

where Pb is the following square, symmetric, rank-1 matrix:

Pb =
bbT

bTb
.

The signed magnitude of the orthogonal projection is

p =
bTa

‖b‖
= ‖p‖ sign(bTa) .

(A proof is given in the Appendix.) From the definition of orthogonal projection it follows that the line
between a point a and its projection p onto the first reference axis is orthogonal to the first reference axis
and, therefore, parallel to the first reference plane. Therefore, a and p are at the same distance from the first
reference plane and on the same side of it. Thus, the first Cartesian coordinate of a, which is defined as the
signed distance of a from the first reference plane, is also the signed magnitude of p. This reasoning can be
applied to any of the three coordinates of a, and we can conclude as follows.

Corollary 1.4. The coordinates of a point in space are the signed magnitudes of the orthogonal projections
of the vector of coordinates of the point onto the three unit vectors that define the coordinate axes.

This result is trivial in the basic Cartesian reference frame with unit points ex = (1, 0, 0)T , ey =
(0, 1, 0)T , ez = (0, 0, 1)T . If p = (x, y, z)T , then obviously

eTxp = x , eTy p = y , eTz p = z .

The result becomes less trivial in Cartesian reference systems where the axes have different orientations, as
we will see soon.
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1.4 The Cross Product

The cross product of two 3-dimensional vectors a = (ax, ay, az)
T and b = (bx, by, bz)

T is the 3-dimensional
vector

c = a× b = (aybz − azby , azbx − axbz , axby − aybx)T .
The following geometric interpretation is proven in the Appendix:

Theorem 1.5. The cross product of two three-dimensional vectors a and b is a vector c orthogonal to both
a and b, oriented so that the triple a, b, c is right-handed, and with magnitude

‖c‖ = ‖a× b‖ = ‖a‖ ‖b‖ | sin θ|

where θ is the angle between a and b.

From its expression, we see that the magnitude of a× b is the area of a parallelogram with sides a and b.
It is immediate to verify that the cross product of two vectors is a linear transformation of either vector

(but not both):

a× (b1 + b2) = a× b1 + a× b2 and similarly (a1 + a2)× b = a1 × b+ a2 × b .

So there must be a 3× 3 matrix [a]× such that

a× b = [a]×b .

This matrix is convenient for repeatedly computing cross products of the form a × p where a is a fixed
vector but p changes. Spelling out the definition of the cross product yields the following matrix:

[a]× =

 0 −az ay
az 0 −ax
−ay ax 0

 .

This matrix is skew-symmetric:
[a]T× = −[a]× .

Of course, similar considerations hold for b: Since

a× b = −b× a ,

we have
a× b = −[b]×a = [b]T×a .

1.5 The Triple Product

The triple product of three-dimensional vectors a, b, c is defined as follows:

aT (b× c) = ax(bycz − bzcy)− ay(bxcz − bzcx) + az(bxcy − bycx) .

It is immediate to verify that

aT (b× c) = bT (c× a) = cT (a× b) = −aT (c× b) = −cT (b× a) = −bT (a× c) .

From its expression, we see that the triple product of vectors a, b, c is, up to a sign, the volume of a
parallelepiped with edges a, b, c: The cross product p = b × c is a vector orthogonal to the plane of b
and c, and with magnitude equal to the base area of the parallelepiped. The inner product of p and a is
the magnitude of p times that of a times the cosine of the angle between them, that is, the base area of the
parallelepiped times its height (or the negative of its height). This gives the volume of the solid, up to a sign.
The sign is positive if and only if the three vectors form a right-handed triple. See Figure 2.
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Figure 2: Up to a sign, the triple product of the vectors a, b, c is the volume of the parallelepiped with edges
a, b, c.

1.6 Multiple Reference Systems

When two or more reference systems are involved, notation must be introduced to avoid possible ambiguities
as to which reference system coordinates refer to. For instance, we may want to express the coordinates of
the origin of one system with respect to the other system.

Reference systems will be identified with natural numbers, and the number zero is reserved for a priv-
ileged system called the world reference system. A left superscript is used to identify the reference system
that a vector or a transformation is written in. A left superscript of zero can be optionally omitted.

Thus, 2p is the vector of the coordinates of point p in reference frame 2. The vector of world coordinates
of the same point can be written as either 0p or just p. The origin t of a reference system has always zero
coordinates in that reference system, so

iti =

 0
0
0


for all natural numbers i, and therefore also

t0 =

 0
0
0


since a zero left superscript is implied. Similarly, if i, j, k are the unit points of a reference system, we have[

iii
iji

iki

]
=
[
i0 j0 k0

]
= I ,

the 3× 3 identity matrix.

1.7 Rotation

A rotation is a transformation between two Cartesian references systems of equal origin and handedness and
with unit points of equal magnitude. Let the two systems be S0 (the world reference system) and S1. Then,
the common origin is

t0 = t1 =

 0
0
0



5



where the left superscripts were omitted because coordinates refer to the world reference system. The unit
points of S1 are i1, j1, k1 when their coordinates are expressed in S0 (implied left superscript 0). Then a
point with coordinates p = (x, y, z)T in S0 can be reached from the origin t1 common to the two systems
by a polygonal path with the following four vertices:

t1 , a = 1x i1 , b = 1x i1 +
1y j1 , p = 1x i1 +

1y j1 +
1z k1 .

The steps of this path are along the axes of S1. The numbers 1x, 1y, 1z are the magnitudes of the steps,
and also the coordinates of the point in S1. These step sizes are the signed magnitudes of the orthogonal
projections of the point onto i1, j1, k1, and from Theorem 1.3 we see that

1x = iT1 p , 1y = jT1 p , 1z = kT
1 p

because the vectors i1, j1, k1 have unit norm. These three equations can be packaged into a single matrix
equation that expresses the vector 1p = (1x, 1y, 1z)T as a function of p:

1p = R1 p where R1 =
0R1 =

 iT1
jT1
kT
1


where the 3× 3 matrix 0R1 is called a rotation matrix.

This result was obtained without using the privileged status of the world reference system S0 (except to
omit some of the left superscripts). Therefore, the result must be general: Given any two Cartesian reference
systems Sa and Sb with a common origin,

bp = aRb
ap where aRb =

 aiTb
ajTb
akT

b

 .

A rotation is a reversible transformation, and therefore the matrix aRb must have an inverse, another
matrix bRa that transforms back from Sb to Sa:

ap = bRa
bp .

The proof of the following fact is given in the Appendix.

Theorem 1.6. The inverse R−1 of a rotation matrix R is its transpose:

RTR = RRT = I .

Equivalently, if aRb is the rotation whose rows are the unit points of reference systems b expressed in refer-
ence system a, then

bRa = aRT
b .

Note that RT , being the inverse of R, is also a transformation between two Cartesian systems with the
same origin and handedness, so RT is a rotation matrix as well, and its rows must be mutually orthogonal
unit vectors. Since the rows of RT are the columns of R, we conclude that both the rows and columns of a
rotation matrix are unit norm and orthogonal. This makes intuitive sense: Just as the rows of R = aRb are
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the unit vectors of Sb expressed in Sa, so its columns (the rows of the inverse transformation RT = bRa) are
the unit vectors of Sa expressed in Sb.

The equations in Theorem 1.6 characterize combinations of rotations and possible inversions. An inver-
sion (also known as a mirror flip) is a transformation that changes the direction of some of the axes. This is
represented by a matrix of the form

S =

 sx 0 0
0 sy 0
0 0 sz


where sx, sy sz are equal to either 1 or −1, and there is either one or three negative elements. It is easy to
see that

STS = SST = I .

If there were zero or two negative elements, then S would be a rotation matrix, because the flip of two
axes can be achieved by a rotation. For instance, the directions of both the x and the y axis can be flipped
simultaneously by a 180-degree rotation around the z axis. No rotation can flip the directions of an odd
number of axes.

The determinant of a 3×3 matrix is the triple product of its rows. Direct manipulation shows that this is
the same as the triple product of its columns. It is immediate to see that the determinant of a rotation matrix
is 1:

det(R) = iT (j× k) = iT i = 1

because
i× j = k , j× k = i , k× i = j .

These equalities can be verified in turn by the geometric interpretation of the cross product: each of the three
vectors i, j, k is orthogonal to the other two, and its magnitude is equal to 1. The order of the vectors in the
equalities above preserves handedness.

It is even easier to see that the determinant of an inversion matrix S is equal to −1. Thus, the following
conclusion can be drawn.

A matrix R is a rotation if and only if RTR = RRT = I and det(R) = 1.
A diagonal matrix S is an inversion if and only if STS = SST = I and det(S) = −1.

Note that in particular the identity matrix I is a rotation, and −I is an inversion.

Geometric Interpretation of Orthogonality. The orthogonality result

R−1 = RT

is very simple, and yet was derived in the Appendix through a relatively lengthy sequence of algebraic
steps. This Section reviews orthogonality of rotation matrices from a geometric point of view, and derives
the result above by conceptually simpler means. The rows of the rotation matrix

aRb =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

 aiTb
ajTb
akT

b
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are by definition the unit vectors of the reference system Sb, expressed in the reference system Sa. This
means that its entry rmn is the signed magnitude of the orthogonal projection of the m-th unit vector in Sb
onto the n-th unit vector in Sa. For instance,

r12 =
aiTb

aja and r31 =
akT

b
aia .

However, the signed magnitude of the orthogonal projection of a unit vector onto another unit vector is
simply the cosine of the angle between them:

rij = cosαij

where αij is the angle between the i-th axis of the new system and the j-th axis of the old.
Thus, the entries of a rotation matrix are direction cosines: they are all cosines of well-defined angles.

This result also tells us that signed orthogonal projection magnitude is symmetric for unit vectors: For in-
stance, the signed magnitude of the orthogonal projection of aib onto aja is the same as the signed magnitude
of the orthogonal projection of aja onto aib. Since angles do not depend on reference system, the projection
is the same when expressed in Sb:

r12 =
aiTb

aja = ajTa
aib =

bjTa
bib

where in the second equality we merely switched the two vectors with each other and in the third we changed
the reference system (i.e., both left superscripts) from Sa to Sb.

This symmetry is the deep reason for orthogonality: When we want to go from the “new” system Sb
back to the “old” system Sa through the inverse matrix R−1 = bRa, we seek to express the unit vectors of
Sa in the system Sb, that is, we seek the signed magnitudes of the orthogonal projections of each unit vector
of the “old” system Sa onto each of the unit vectors of the “new” system Sb . Because of symmetry, these
orthogonal projections are already available in the matrix R, just in a different arrangement: what we want
in the rows of R−1 can be found in the columns of R. Voilà:

R−1 = RT .

The Cross Product is Covariant with Rotations. We saw that the cross product of two vectors a and b
is a third vector c that is orthogonal to both a and b, such that the triple a,b, c is right-handed, and such as
the signed magnitude of c is the product ‖a‖ ‖b‖ times the magnitude of the sine of the angle θ between a
and b. If a and b are simultaneously rotated by the same rotation R to produce the new vectors a′ and b′,
then the line orthogonal to a and b rotates the same way, because rotating a and b is the same as rotating
the reference system in the opposite direction. Thus, the direction of c′ = a′ × b′ is that of Rc. In addition,
a rotation does not change the magnitudes of vectors it is applied to, nor does it change the angle between
any pair of vectors, or their handedness. Therefore, c′ = Rc. To summarize, this argument shows that the
cross product is covariant with rotations:

(Ra)× (Rb) = R (a× b) .

In words, if you rotate the inputs to a cross product, the output rotates the same way.
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1.8 Coordinate Transformation

A right-handed Cartesian system of reference S1 can differ from the world reference system S0 by a trans-
lation of the origin from t0 = (0, 0, 0)T to t1 and a rotation of the axes from unit points i0 = ex, j0 = ey,
k0 = ez to unit points i1, j1, k1. Suppose that the origin of frame S0 is first translated to point t1 and then
the resulting frame is rotated by R1 (see Figure 3). Given a point with coordinates p = (x, y, z)T in S0, the
coordinates 1p = (1x, 1y, 1z)T of the same point in S1 are then

1p = R1(p− t1) . (1)

The translation is applied first, to yield the new coordinates p−t1 in an intermediate frame. This translation
does not change the directions of the coordinate axes, so the rotation from the intermediate frame to S1 is
the same rotation R1 as from S0 to S1, which is applied thereafter.

The inverse transformation applies the inverse operations in reverse order:

p = RT
1

1p+ t1 . (2)

This can also be verified algebraically from equation (1): Multiplying both sides by RT
1 from the left yields

RT
1

1p = RT
1R1(p− t1) = p− t1

and adding t1 to both sides yields equation (2). Thus,

1R0 =
0RT

1 and 1t0 = −0R1
0t1

since
p = RT

1
1p+ t1 = RT

1 (
1p− (−R1t1)) .

More generally, if
bp = aRb(

ap− atb) (3)

then
ap = bRa(

bp− bta) where bRa = aRT
b and bta = −aRb

atb . (4)

The transformations (3) and (4) are said to be rigid, in that they preserve both distances and handedness.
They are also sometimes referred to as special Euclidean, where the attribute “special” refers to the fact that
mirror flips are not included—i.e., the determinant of the rotation matrix is 1, rather than 1 just in magnitude.

Chaining Rigid Transformations If two right-handed Cartesian systems Sa and Sb are given, say, in the
world reference system S0, then the transformation from Sa to Sb can be obtained in two steps, just as we
did for rotations: First transform from Sa to S0, then from S0 to Sb:

p = 0p = aR0(
ap− at0) =

0RT
a (

ap+ 0Ra
0ta) = RT

a
ap+ ta

and
bp = 0Rb(

0p− 0tb) = Rb(p− tb)

so that
bp = Rb(R

T
a

ap+ ta − tb) = RbR
T
a [

ap+Ra(ta − tb)] ,

that is,
bp = aRb(

ap− atb) where aRb = RbR
T
a and atb = Ra(tb − ta) .
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Figure 3: Transformation between two reference systems.

The following box summarizes these results:

If
bp = Rb(p− tb) and ap = Ra(p− ta)

are the transformations between world coordinates and reference frames Sa and Sb, then the trans-
formation from Sa to Sb is

bp = aRb(
ap− atb) where aRb = RbR

T
a and atb = Ra(tb − ta)

and the reverse transformation, from Sb to Sa, is

ap = bRa(
bp− bta) where bRa = RaR

T
b and bta = Rb(ta − tb) .

Consistently with these relations,

bRa = aRT
b and bta = −aRb

atb .
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2 The Pinhole Camera Model

The images we process in computer vision are formed by light bouncing off surfaces in the world and into
the lens of the camera. The light then hits an array of sensors, called pixels, inside the camera. Each sensor
produces electric charges that are read by an electronic circuit and converted to voltages. These are in turn
sampled by a device called a digitizer (or analog-to-digital converter) to produce the numbers that computers
eventually process, called pixel values. Thus, the pixel values are a rather indirect encoding of the physical
properties of visible surfaces. Is it not amazing that all those numbers in an image file carry information on
how the properties of a packet of photons were changed by bouncing off a surface in the world? Even more
amazing is that from this information we can perceive shapes and colors.

The study of what happens to the light that leaves surfaces in the world and makes it to the camera sensor
is often encapsulated into what computer vision calls the pinhole camera model, a very much simplified de-
scription of camera optics that encapsulates the geometry of perspective projection. This section introduces
this model. A later note, devoted to camera calibration, explains the key differences between the pinhole
camera model and real lenses, and also describes what happens at the pixel level.

A pinhole camera is a box with five opaque faces and a translucent one. A very small hole is punched in
the face of the box opposite to the translucent face. If you consider a single point in the world, such as the tip
of the candle flame in Figure 4(a), only a thin beam from that point enters the pinhole and hits the translucent
screen. Thus, the pinhole acts as a selector of light rays: without the pinhole and the box, any point on the
screen would be illuminated from a whole hemisphere of directions, yielding a uniform coloring. With the
pinhole, on the other hand, an inverted image of the visible world is formed on the screen. Since the screen
is translucent, the image can be seen from outside the box. When the pinhole is reduced to a single point,
this image is formed where the plane of the screen intersects the star of rays through the pinhole. Of course,
a pinhole reduced to a point is an idealization: no power would pass through such a pinhole, and the image
would be infinitely dim (black).

pinhole

projection ray

image plane

optical
axis

pinhole

projection ray

sensor plane

optical
axis

optical
axis

principal
point

center of
projection

projection
ray

Y

X
Z

image
origin

image plane

η

ξ

y

x

(a) (b) (c)

Figure 4: (a) Projection geometry for a pinhole camera. (b) If a screen could be placed in front of the
pinhole, rather than behind, without blocking the projection rays, then the image would be upside-up. (c)
What is left is the so-called pinhole camera model. The camera coordinate frame (X,Y, Z) is right-handed.

The fact that the image on the screen is inverted is mathematically inconvenient. It is therefore customary
to consider instead the intersection of the star of rays through the pinhole with a plane parallel to the screen
and in front of the pinhole as shown in Figure 4(b). This is of course an even greater idealization, since a
screen in this position would block the light rays. So this model is a mathematical artifact, but a convenient
one to use when doing mathematics. The new image is isomorphic to the old one, produced by the real
pinhole camera, but upside-up.
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In this model, the pinhole is called more appropriately the center of projection (Figure 4(c)). The front
screen is the image plane. The distance between center of projection and image plane is the focal distance,
and is denoted with f . The optical axis is the line through the center of projection that is perpendicular to
the image plane. The point where the optical axis pierces the sensor plane is the principal point.

The origin of the pixel image coordinate system (ξ, η) is placed in the top left corner of the image. The
camera reference system (X,Y, Z) axes are respectively parallel to ξ, η, and the optical axis, and the Z axis
points towards the scene. With the choice in Figure 4(c), the camera reference system is right-handed. The
Z coordinate of a point in the world is called the point’s depth. The canonical image coordinate system
(x, y) is oriented like the pixel image coordinate system, but its origin is at the principal point. Therefore,
for a point in the image plane

x = X and y = Y .

The units used to measure point coordinates in the camera reference system (X,Y, Z) and in the canon-
ical image reference system (x, y) are different from those used in the pixel image reference system (ξ, η).
Typically, metric units (meters, centimeters, millimeters) are used in the first two systems system and pixels
in the pixel image system. Pixels are the individual, rectangular elements on a digital camera’s sensing
array. Since pixels are not necessarily square, there may be a different number of pixels in a millimeter mea-
sured horizontally on the array than in a millimeter measured vertically, so two separate conversion units are
needed to convert pixels to millimeters (or vice versa) in the two directions.

Every point on the image plane has a Z coordinate equal to f in the camera reference system. Both
image reference systems, on the other hand, are two-dimensional, so the third coordinate is undefined in
these systems, which differ from each other by a translation and two separate unit conversions:

Let ξ0 and η0 be the coordinates in pixels of the principal point π0 of the image in the pixel im-
age reference system (ξ, η). Then an image point p with coordinates (x, y) in millimeters in the
canonical image reference system has pixel image coordinates (in pixels)

ξ = sxx+ ξ0 and η = syy + η0 (5)

where sx and sy are scaling constants expressed in pixels per millimeter.

The projection equations relate the camera-system coordinates P = (X,Y, Z) of a point in space to the
canonical image coordinates p = (x, y) of the projection of P onto the image plane and then, in turn, to
the pixel image coordinates π = (ξ, η) of the projection. These equations can be easily derived for the x
coordinate from the top view in Figure 5. From this Figure we see that the triangle with orthogonal sides
of length X and Z is similar to that with orthogonal sides of length x and f (the focal distance), so that
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X/Z = x/f . Similarly, for the Y coordinate, one gets Y/Z = y/f . In conclusion,

Under perspective projection, the world point P with coordinates (X,Y, Z) projects to the image
point with coordinates

x = f
X

Z
(6)

y = f
Y

Z
.

One way to make units of measure consistent in these projection equations is to measure all quantities in
the same unit, say, millimeters. In this case, the two constants sx and sy in equation (5) have the dimension
of pixels per millimeter. However, it is sometimes more convenient to express x, y, and f in pixels (image
dimensions) and X , Y , Z in millimeters (world dimensions). The ratios x/f , y/f , X/Z, and Y/Z are then
dimensionless, so the equations (6) are dimensionally consistent with this choice as well. In this case, the
two constants sx and sy in equation (5) are dimensionless as well.

An even simpler choice for the projection equations (6) is to express x, y, and f in units of focal distance,
so that f = 1. In that case, of course, sx and sy have the dimensions of pixels per focal distance.

P

p

X

x

f

Z

image
plane

center of
projection

Figure 5: A top view of figure 4 (c).
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Equations (5) and (6) can be written somewhat more compactly as follows:

p = Kf
P

Z
and ξ = Ksp+ π0

where

Kf =

[
f 0 0
0 f 0

]
and Ks =

[
sx 0
0 sy

]
.

Even more compact notation could be attained by using homogeneous coordinates. However, the ad-
ditional compactness does not justify the cost of introducing this representation given the scope of these
notes.

Of course, if the world points P are in a frame of reference different from the camera’s, coordinates are
to be transformed by an appropriate rigid transformation into the camera’s reference frame, before applying
the projection equations.
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Appendix: Proofs

Theorem 1.1

aTb = ‖a‖ ‖b‖ cos θ

where θ is the acute angle between the two arrows that represent a and b geometrically.

Proof. Consider a triangle with sides

a = ‖a‖ , b = ‖b‖ , c = ‖b− a‖

and with an angle θ between a and b. Then the law of cosines yields

‖b− a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ .

From the definition of norm we then obtain

‖a‖2 + ‖b‖2 − 2aTb = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ .

Canceling equal terms and dividing by −2 yields the desired result.

Theorem 1.3

The orthogonal projection of a onto b is the vector

p = Pba

where Pb is the following square, symmetric, rank-1 matrix:

Pb =
bbT

bTb
.

The signed magnitude of the orthogonal projection is

p =
bTa

‖b‖
= ‖p‖ sign(bTa) .

Proof. To prove this, observe that since by definition point p is on the line through b, the orthogonal pro-
jection vector p has the form p = xb, where x is some real number. From elementary geometry, the line
between p and the endpoint of a is shortest when it is perpendicular to b:

bT (a− xb) = 0

which yields

x =
bTa

bTb

so that

p = xb = bx =
bbT

bTb
a
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as advertised. The magnitude of p can be computed as follows. First, observe that

P 2
b =

bbT

bTb

bbT

bTb
=

bbTbbT

(bTb)2
=

bbT

bTb
= Pb

so that the orthogonal-projection matrix3 Pb is idempotent:

P 2
b = Pb .

This means that applying the matrix once or multiple times has the same effect. Then,

‖p‖2 = pTp = aTP T
b Pba = aTPbPba = aTPba = aT

bbT

bTb
a =

(bTa)2

bTb

which, once the sign of bta is taken into account, yields the promised expression for the signed magnitude
of p.

Theorem 1.5

The cross product of two three-dimensional vectors a and b is a vector c orthogonal to both a and b,
oriented so that the triple a, b, c is right-handed, and with magnitude

‖c‖ = ‖a× b‖ = ‖a‖ ‖b‖ | sin θ|

where θ is the angle between a and b.

Proof. That the cross product c of a and b is orthogonal to both a and b can be checked directly:

cTa = (aybz − azby)ax + (azbx − axbz)ay + (axby − aybx)az = 0

cTb = (aybz − azby)bx + (azbx − axbz)by + (axby − aybx)bz = 0

(verify that all terms do indeed cancel). We also have

(aTb)2 + ‖a× b‖2 = ‖a‖2 ‖b‖2

as can be shown by straightforward manipulation:

(aTb)2 = (axbx + ayby + azbz) (axbx + ayby + azbz)

= a2xb
2
x + axbxayby + axbxazbz

+a2yb
2
y + axbxayby + aybyazbz

+a2zb
2
z + axbxazbz + aybyazbz

= a2xb
2
x + a2yb

2
y + a2zb

2
z + 2axbxayby + 2aybyazbz + 2axbxazbz

and

‖a× b‖2 = (aybz − azby)2 + (azbx − axbz)2 + (axby − aybx)2

= a2yb
2
z + a2zb

2
y − 2aybyazbz

+a2xb
2
z + a2zb

2
x − 2axbxazbz

+a2xb
2
y + a2yb

2
x − 2axbxayby

= a2xb
2
y + a2yb

2
x + a2yb

2
z + a2zb

2
y + a2xb

2
z + a2zb

2
x

−2axbxayby − 2aybzayby − 2axbxazbz

3The matrix that describes orthogonal projection is not an orthogonal matrix. It could not possibly be, since it is rank-deficient.
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so that

(aTb)2 + ‖a× b‖2 = a2xb
2
x + a2xb

2
y + a2xb

2
z + a2yb

2
x + a2yb

2
y + a2yb

2
z + a2zb

2
x + a2zb

2
y + a2zb

2
z

but also

‖a‖2 ‖b‖2 = a2xb
2
x + a2xb

2
y + a2xb

2
z + a2yb

2
x + a2yb

2
y + a2yb

2
z + a2zb

2
x + a2zb

2
y + a2zb

2
z

so that
(aTb)2 + ‖a× b‖2 = ‖a‖2 ‖b‖2 (7)

as desired. The result on the magnitude is a consequence of equation (7). From this equation we obtain

‖a× b‖2 = ‖a‖2 ‖b‖2 − (aTb)2 = ‖a‖2 ‖b‖2 − ‖a‖2 ‖b‖2 cos2 θ = ‖a‖2 ‖b‖2 sin2 θ

or
‖a× b‖ = ‖a‖ ‖b‖ | sin θ| .

Theorem 1.6

The inverse R−1 of a rotation matrix R is its transpose:

RTR = RRT = I .

Equivalently, if aRb is the rotation whose rows are the unit points of reference systems b expressed in refer-
ence system a, then

bRa = aRT
b .

Proof. Assume that a = 0 and b = 1, so that left superscripts equal to 0 can be omitted. This assumption
can be made without loss of generality, because the following proof makes no use of the privileged nature
of system S0, other than for simplifying away left superscripts. Also, for further brevity, let

R = 0R1 .

When we rotate point p through R we obtain a vector 1p of coordinates in S1. We then look for a new
matrix R−1 = 1R0 that applied to 1p gives back the original vector p:

1p = Rp → p = R−1 1p

that is, by combining these two equations,

p = R−1Rp .

Since this equality is to hold for any vector p, we need to find R−1 such that

R−1R = I =

 1 0 0
0 1 0
0 0 1

 .
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The matrix R−1 is called the left inverse of R. However, even a right inverse, that is, a matrix Q such that

RQ = I

will do. This is because for any square matrix A, if the matrixB is the right inverse of A, that is, if AB = I ,
then B is also the left inverse:

BA = I .

The proof of this fact is a single line: suppose that B is the right inverse of A and the left inverse is a matrix
C, so that CA = I . Then

C = CI = C(AB) = (CA)B = IB = B ,

which forces us to conclude that B and C are the same matrix. So we can drop “left” or “right” and merely
say inverse.

The inverse R−1 of the rotation matrix R is more easily found by looking for a right inverse. The three
vectors i, j, k that make up the rows of R have unit norm,

iT i = jT j = kTk = 1 ,

and are mutually orthogonal:
iT j = jTk = kT i = 0 .

Because of this,

RRT =

 iT

jT

kT

 [ i j k
]
=

 iT i iT j iTk
jT i jT j jTk
kT i kT j kTk

 =

 1 0 0
0 1 0
0 0 1


as promised.
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