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Template Matching and Correlation

Template Matching
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Template Matching and Correlation

Normalized Cross-Correlation
ρ(r , c) = τ Tω(r , c)

τ =
t−mt

‖t−mt‖
and ω(r , c) =

w(r , c)−mw(r ,c)

‖w(r , c)−mw(r ,c)‖

−1 ≤ ρ(r , c) ≤ 1

ρ = 1 ⇔ W (r , c) = αT + β , α > 0
ρ = −1 ⇔ W (r , c) = αT + β , α < 0
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Template Matching and Correlation

Results
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Template Matching and Correlation

Cross-Correlation

(ignoring normalization for simplicity)

J(r , c) = tT w(r , c)
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Template Matching and Correlation

Code, Math
for r = 1:m

for c = 1:n
J(r, c) = 0
for u = -h:h

for v = -h:h
J(r, c) = J(r, c) + T(u, v) * I(r+u, c+v)

end
end

end
end

J(r , c) =
h∑

u=−h

h∑
v=−h

I(r + u, c + v)T (u, v)
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Image Convolution

Convolution
Correlation:

J(r , c) =
h∑

u=−h

h∑
v=−h

I(r + u, c + v)T (u, v)

Convolution:

J(r , c) =
h∑

u=−h

h∑
v=−h

I(r−u, c−v)H(u, v)

Same as

J(r , c) =
h∑

u=−h

h∑
v=−h

I(r+u, c+v)H(−u,−v)

Convolution with kernel H(u, v) is correlation with template
T (u, v) = H(−u,−v)
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Image Convolution

What’s the Big Deal?

Simplify J(r , c) =
h∑

u=−h

h∑
v=−h

I(r − u, c − v)H(u, v)

to J(r , c) =
∞∑

u=−∞

∞∑
v=−∞

I(r − u, c − v)H(u, v)

Changes of variables u ← r − u and v ← c − v

J(r , c) =
∞∑

u=−∞

∞∑
v=−∞

H(r − u, c − v)I(u, v)

Convolution commutes: I ∗ H = H ∗ I
(Correlation does not)
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Image Convolution

Importance of Convolution in Mathematics
• Polynomials: coefficients of product are “full” convolutions

of coefficients:
P(x) = p0 + p1x + . . .+ pmxm

Q(x) = q0 + q1x + . . .+ qnxn

R(x) = p0q0 + (p0q1 + p1q0)x + . . .+ pmqnxm+n

• Example:
P(x) = p0 + p1x + p2x2 + p3x3 → (p0,p1,p2,p3)

Q(x) = q0 + q1x + q2x2 → (q0,q1,q2)

Convolve (p0,p1,p2,p3) with (q0,q1,q2) to get (r0, r1, r2, r3, r4, r5)
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Image Convolution

Important Consequence

• Discrete Fourier transform is a polynomial:
p = (p0, . . . ,pn−1)

• F [p](`) = p0 + p1z + . . .+ pn−1zn−1 where z = 1
ne−i2π`/n

• All of spectral signal theory follows
• Example: The Fourier transform of a convolution is the

product of the Fourier transforms
• [We will not see this]
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Image Convolution

Image Boundaries: “Valid” Convolution
• Full overlap of image and kernel
• If I is m×n and H is k × `, then J is (m− k +1)× (n− `+1)
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Image Convolution

Image Boundaries: “Full” Convolution
• Any non-empty overlap of image and kernel
• If I is m × n and H is k × `, then J is (m+k−1)× (n+`−1)

[Pad with either zeros or copies of boundary pixels]
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Image Convolution

Image Boundaries: “Same” Convolution
• Require the output to have the same size as the input
• If I is m × n and H is k × `, then J is m × n
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Filters

Filters

• What is convolution for?
• Smoothing for noise reduction
• Image differentiation
• Convolutional Neural Networks (CNNs)
• . . .

• Smoothing and differentiation are examples of filtering:
Local, linear image→ image transformations
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Filters

Smoothing for Noise Reduction

• Assume: Image varies slowly enough to be locally linear
• Assume: Noise is zero-mean and white
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Filters

Averaging as Convolution

J(c) = 1
2h+1

∑h
v=−h I(c − h) is the same as

J(c) =
∑h

v=−h I(c − h)H(c) where H(c) = 1
2h+1 [1, . . . ,1],

a convolution with the box kernel

Box kernel in two dimensions:

u

v
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Filters

Box versus Gaussian Kernel

u

v

• The Gaussian kernel does a weighted average
• Emphasizes nearby values more than distant ones
• Blurs less than the box kernel for the same averaging effect
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Filters

Box versus Gaussian Kernel
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Filters

Truncation
G(u, v) = e−

1
2

u2+v2

σ2

• The larger σ, the more smoothing
• u, v integer, and cannot keep them all
• Truncate at 3σ or so

e−
32
2 ≈ 0.01
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Filters

Normalization
G(u, v) = e−

1
2

u2+v2

σ2

• We want I ∗G ≈ I
• For I = c (constant), I ∗G = I
• Normalize by computing γ = 1 ∗G, and then let G← G/γ
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Separable Convolution

Separability
• A kernel that satisfies H(u, v) = h(u)`(v) is separable
• The Gaussian is separable with h = `:

G(u, v) = e−
1
2

u2+v2

σ2 = g(u)g(v) with g(u) = e−
1
2(

u
σ )

2

• A separable kernel leads to efficient convolution:

J(r , c) =
h∑

u=−h

k∑
v=−k

H(u, v) I(r − u, c − v)

=
h∑

u=−h

h(u)
k∑

v=−k

`(v) I(r − u, c − v)

=
h∑

u=−h

h(u)φ(r − u, c) where φ(r , c) =
h∑

v=−h

`(v)I(r , c − v)
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Separable Convolution

Computational Complexity

General: J(r , c) =
∑h

u=−h

∑k
v=−k H(u, v) I(r − u, c − v)

Separable: J(r , c) =
∑h

u=−h h(u)φ(r − u, c) where
φ(r , c) =

∑h
v=−h `(v)I(r , c − v)

Let m = 2h + 1 and n = 2k + 1
General: About 2mn operations per pixel
Separable: About 2m + 2n operations per pixel
Example:

When m = n (square kernel), the gain is 2m2/4m = m/2
With m = 20: About 80 operations per pixel instead of 800
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