Local, Unconstrained Function Optimization

COMPSCI 527 — Computer Vision

Outline

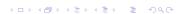
- Motivation and Scope
- 2 First Order Methods
- Gradient, Hessian, and Convexity
- Gradient Descent
- 5 Stochastic Gradient Descent
- 6 Step Size Selection Methods
- Termination
- 8 Is Gradient Descent a Good Strategy?

Motivation and Scope

- Most estimation problems are solved by optimization
- Machine learning:
 - Parametric predictor: $h(\mathbf{x}; \mathbf{v}) : \mathbb{R}^d \times \mathbb{R}^m \to Y$
 - Training set $T = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ and $loss = \ell(y_n, y)$ Risk: $L_T(\mathbf{v}) = \frac{1}{N} \sum_{n=1}^N \ell(y_n, h(\mathbf{x}_n; \mathbf{v})) : \mathbb{R}^m \to \mathbb{R}$

 - Training: $\hat{\mathbf{v}} = \arg\min_{\mathbf{v} \in \mathbb{R}^m} L_T(\mathbf{v})$
- 3D Reconstruction:
 - Computer Graphics: $I = \pi(C, S)$ where I are (multiple) images, C are the camera positions and orientations, S is scene shape
 - Computer Vision: Given I, find $\hat{C}, \hat{S} = \operatorname{arg\,min}_{C,S} \|I - \pi(C,S)\|$
- In general, "solving" the system of equations $E(\mathbf{z}) = 0$ can be viewed as

$$\hat{\mathbf{z}} = \operatorname{arg\,min}_{\mathbf{z}} \| E(\mathbf{z}) \|$$



Only Local Minimization

```
\hat{\mathbf{z}} = \operatorname{arg\,min}_{\mathbf{z} \in \mathbf{?}} f(\mathbf{z})
```

- All we know about *f* is a "black box" (think Python function)
- For many problems, f has many local minima
- Start somewhere (z₀), and take steps "down"
 f(z_{k+1}) < f(z_k)
- When we get stuck at a local minimum, we declare success
- We would like global minima, but all we get is local ones
- For some problems, f has a unique minimum...
- ... or at least a single connected set of minima

Gradient

$$abla f(\mathbf{z}) = rac{\partial f}{\partial \mathbf{z}} = \left[egin{array}{c} rac{\partial f}{\partial z_1} \ dots \ rac{\partial f}{\partial z_m} \end{array}
ight]$$

- We worked with gradients for the case $\mathbf{z} \in \mathbb{R}^2$ (images)
- Now $\mathbf{z} \in \mathbb{R}^m$ with m possibly very large
- If $\nabla f(\mathbf{z})$ exists everywhere, the condition $\nabla f(\mathbf{z}) = \mathbf{0}$ is necessary and sufficient for a stationary point (max, min, or saddle)
- Warning: only necessary for a minimum!
- Reduces to first derivative when $f: \mathbb{R} \to \mathbb{R}$

First Order Taylor Expansion

 $f(\mathbf{z}) \approx g_1(\mathbf{z}) = f(\mathbf{z}_0) + [\nabla f(\mathbf{z}_0)]^T (\mathbf{z} - \mathbf{z}_0)$ approximates $f(\mathbf{z})$ near \mathbf{z}_0 with a (hyper)plane through \mathbf{z}_0



 $\nabla f(\mathbf{z}_0)$ points to direction of steepest *increase* of f at \mathbf{z}_0

- If we want to find \mathbf{z}_1 where $f(\mathbf{z}_1) < f(\mathbf{z}_0)$, going along $-\nabla f(\mathbf{z}_0)$ seems promising
- This is the general idea of gradient descent.

Hessian

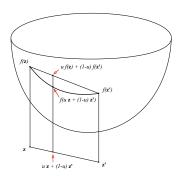
$$H(\mathbf{z}) = \left[egin{array}{ccc} rac{\partial^2 f}{\partial z_1^2} & \cdots & rac{\partial^2 f}{\partial z_1 \partial z_m} \\ dots & & dots \\ rac{\partial^2 f}{\partial z_m \partial z_1} & \cdots & rac{\partial^2 f}{\partial z_m^2} \end{array}
ight]$$

Symmetric matrix because of Schwarz's theorem:

$$\frac{\partial^2 f}{\partial z_i \partial z_i} = \frac{\partial^2 f}{\partial z_i \partial z_i}$$

- Eigenvalues are real because of symmetry
- Reduces to $\frac{d^2f}{dz^2}$ for $f: \mathbb{R} \to \mathbb{R}$

Convexity



- Weakly convex *everywhere*: For all \mathbf{z}, \mathbf{z}' in the (open) domain of f and for all $u \in (0, 1)$ $f(u\mathbf{z} + (1 - u)\mathbf{z}') \leq uf(\mathbf{z}) + (1 - u)f(\mathbf{z}')$
- Strong convexity: Replace "<" with "<"
- Convex at z₀: The function f is convex everywhere in some open neighborhood of z₀

Convexity and Hessian

- Things become operational for twice-differentiable functions
- The function f(z) is weakly convex at z iff $H(z) \geq 0$
- "≽" means *positive semidefinite*:

$$\mathbf{z}^T H \mathbf{z} > 0$$
 for all $\mathbf{z} \in \mathbb{R}^m$

- Above is *definition* of $H(\mathbf{z}) \geq 0$
- To check computationally: All eigenvalues are nonnegative
- $H(\mathbf{z}) \succcurlyeq 0$ reduces to $\frac{d^2f}{dz^2} \ge 0$ for $f : \mathbb{R} \to \mathbb{R}$
- Analogous result for strong convexity: H(z) > 0, that is,
 z^THz > 0 for all z ∈ ℝ^m
 (All eigenvalues are positive)

Some Uses of Convexity

- If $\nabla f(\hat{\mathbf{z}}) = \mathbf{0}$ and f is convex at $\hat{\mathbf{z}}$ then $\hat{\mathbf{z}}$ is a minimum (as opposed to a maximum or a saddle)
- If f is globally convex then the value of the minimum is unique and minima form a convex set (The latter occurs rarely)
- Faster optimization methods can be used when $f: \mathbb{R}^m \to \mathbb{R}$ is convex and m is not too large

A Template

 Regardless of method, most local unconstrained optimization methods fit the following template:

```
k=0 while \mathbf{z}_k is not a minimum compute step direction \mathbf{p}_k compute step size \alpha_k>0 \mathbf{z}_{k+1}=\mathbf{z}_k+\alpha_k\mathbf{p}_k k=k+1 end
```

Design Decisions

$$k=0$$
 while \mathbf{z}_k is not a minimum compute step direction \mathbf{p}_k compute step size $\alpha_k>0$ $\mathbf{z}_{k+1}=\mathbf{z}_k+\alpha_k\mathbf{p}_k$ $k=k+1$ end

- In what direction to proceed (p_k)
- How long a step to take in that direction (α_k)
- When to stop ("while z_k is not a minimum")
- Different decisions lead to different methods

Gradient Descent

- In what direction to proceed: $\mathbf{p}_k = -\nabla f(\mathbf{z}_k)$
- "Gradient descent"
- Problem reduces to one dimension:

$$h(\alpha) = f(\mathbf{z}_k + \alpha \mathbf{p}_k)$$

- $\alpha = 0 \Leftrightarrow \mathbf{z} = \mathbf{z}_k$
- Find $\alpha = \alpha_k > 0$ such that $f(\mathbf{z}_k + \alpha_k \mathbf{p}_k) < f(\mathbf{z}_k)$
- How to find α_k ?

Stochastic Gradient Descent

 A special case of gradient descent, SGD works for averages of many terms (N very large):

$$f(\mathbf{z}) = \frac{1}{N} \sum_{n=1}^{N} \phi_n(\mathbf{z})$$

- Computing $\nabla f(\mathbf{z}_k)$ is too expensive
- Partition $B = \{1, ..., N\}$ into J random *mini-batches* B_j each of about equal size

$$f(\mathbf{z}) \approx f_j(\mathbf{z}) = \frac{1}{|B_j|} \sum_{n \in B_j} \phi_n(\mathbf{z}) \quad \Rightarrow \quad \nabla f(\mathbf{z}) \approx \nabla f_j(\mathbf{z}) .$$

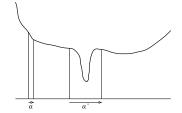
Mini-batch gradients are correct on average

SGD and Mini-Batch Size

- SGD iteration: $\mathbf{z}_{k+1} = \mathbf{z}_k \alpha_k \nabla f_j(\mathbf{z}_k)$
- Mini-batch gradients are correct on average
- One cycle through all the mini-batches is an epoch
- Repeatedly cycle through all the data (Scramble data before each epoch)
- Asymptotic convergence can be proven with suitable step-size schedule
- Small batches ⇒ low storage but high gradient variance
- Make batches as big as will fit in memory for minimal variance
- In deep learning, memory is GPU memory

Step Size

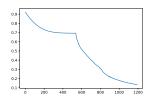
- Simplest idea: $\alpha_k = \alpha$ (fixed)
 - Small α leads to slow progress
 - Large α can miss minima



- Scheduling α:
 - Start with α relatively large (say $\alpha = 10^{-3}$)
 - Decrease α over time
 - Determine decrease rate by trial and error

Momentum

Sometimes z_k meanders around in shallow valleys



 $f(\mathbf{z}_k)$ versus k

- α is too small, direction is still promising
- Add momentum

$$\mathbf{v}_0 = \mathbf{0}$$

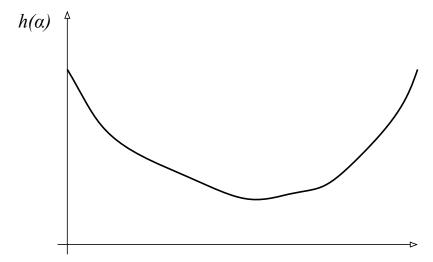
$$\mathbf{v}_{k+1} = \mu_k \mathbf{v}_k - \alpha \nabla f(\mathbf{z}_k) \qquad (0 \le \mu_k < 1)$$

 $\mathbf{z}_{k+1} = \mathbf{z}_k + \mathbf{v}_{k+1}$

Line Search

- Find a local minimum in the search direction \mathbf{p}_k $h(\alpha) = f(\mathbf{z}_k + \alpha \mathbf{p}_k)$, a one-dimensional problem
- Bracketing triple:
- a < b < c, $h(a) \ge h(b)$, $h(b) \le h(c)$
- · Contains a (local) minimum!
- Split the bigger of [a, b] and [b, c] in half with a point u
- Find a new, narrower bracketing triple involving u and two out of a, b, c
- Stop when the bracket is narrow enough (say, 10⁻⁶)
- Pinned down a minimum to within 10⁻⁶

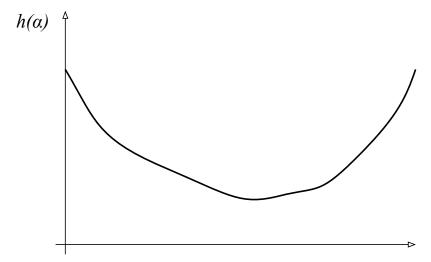
Phase 1: Find a Bracketing Triple



= 00

19/24

Phase 2: Shrink the Bracketing Triple



> 4A> 4E> 4E> E 990

if
$$b-a>c-b$$

 $u=(a+b)/2$
if $h(u)>h(b)$
 $(a,b,c)=(u,b,c)$
otherwise
 $(a,b,c)=(a,u,b)$
end
otherwise
 $u=(b+c)/2$
if $h(u)>h(b)$
 $(a,b,c)=(a,b,u)$
otherwise
 $(a,b,c)=(b,u,c)$
end
end

Termination

- Are we still making "significant progress"?
- Check $f(\mathbf{z}_{k-1}) f(\mathbf{z}_k)$? (We want this to be strictly positive)
- Check $\|\mathbf{z}_{k-1} \mathbf{z}_k\|$? (We want this to be large enough)
- Second is more stringent close the the minimum because $\nabla f(\mathbf{z}) \approx \mathbf{0}$
- Stop when $\|\mathbf{z}_{k-1} \mathbf{z}_k\| < \delta$

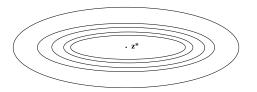
Is Gradient Descent a Good Strategy?

- "We are going in the direction of fastest descent"
- "We choose an optimal step size by line search"
- "Must be good, no?" Not so fast!
- An example for which we know the answer:

$$f(\mathbf{z}) = c + \mathbf{a}^T \mathbf{z} + \frac{1}{2} \mathbf{z}^T Q \mathbf{z}$$

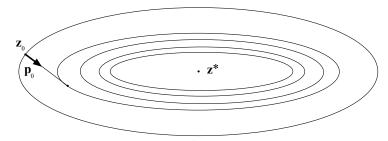
 $Q \succcurlyeq 0$ (convex paraboloid)

All smooth functions look like this close enough to z*



isocontours

Skating to a Minimum



- Many 90-degree turns slow down convergence
- There are methods that take fewer iterations, but each iteration takes more time and space
- · We will stick to gradient descent
- See appendices in the notes for more efficient methods for problems in low-dimensional spaces