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L e
Training is Empirical Risk Minimization

e Classifier network: p = h(x,w) € R¥, then y = argmaxp

e Define aloss ¢(y, y): How much do we pay when the true
label is y and the network says y?

¢ Risk is average loss over training set T = {(x1, 1), ... (Xn, Yn)}:
Lr(w) = &SN L p(w) with £,(W) = £(y,, arg maxk h(X, W))

e Determine network weights w that yield a low risk Lr(w)
overw € R”

e Use Stochastic Gradient Descent because mis large and
Lr(w) is a sum of many terms

e Two large numbers: mand N
e We need VLg(w) and therefore V/,(w) over mini-batches B
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The 0-1 Loss is Useless

e Example: K = 5 classes, scores p = h(X,; W) as in figure
e True label y, = 2, predicted label y, = 0 because
po > py, = P2. Therefore, the loss is 1

Py

k—0 1 2 3 4
e Changing w by an inifinitesimal amount may reduce but not
close the gap between py and p.: loss stays 1
e Thatis, V{,(w) = %t =0
e Gradient provides no information towards reducing the gap!
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e
The Cross-Entropy Loss

¢ We need to compute the loss on
the score p, not on prediction y,

e Use cross-entropy loss on the
score p as a proxy loss
((y,p) = —log py

e Unbounded loss for total
misclassification

¢ Differentiable, nonzero gradient
everywhere

e Meshes well with the soft-max ot

{(y,p)

Dy
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S tesedRe |
Example, Continued

Last layer before soft-max has activations z € R¥

Soft-max has output p = o(z) with px = Zfzkezj € RS
=0

px > 0forall kand Y 5_opk = 1

Ideally, if the correct class is y = 2, we would like output p
to equal q = [0, 0, 1,0, 0], the one-hot encoding of y
Thatis, g, = g = 1 and all other g; are zero

{(y,p) = —logpy = —log p2

When p approaches q we have p, — 1 and {(y,p) — O
When p is far from q we have p, — 0 and /(y,p) — oo
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Example, Continued
e Cross-entropy loss meshes well with soft-max

® {(y,p)=—logp, = —log % = |0g(2;':o &%) — z,
* When z, > z,, for all y’ # y we have
Iog(Zj’zo e%) ~ loge” = z,so that {(y,p) — O
* When z, < z, for some y’ # y we have log(3_} , %) ~ ¢

(c effectively independent of z,) so that ¢/(y,p) = —oc
linearly (Actual plot depends on all values in z)

e This is a “soft hinge loss” in z (not in p)



S sekPoegaton
Back-Propagation
e We need VLg(w) over some mini-batch B and therefore

!
Vin(w) = % = (% . %> for a network with J layers

OW{ """ Owy

X, =x® x@ x? x3)= p y
— o ) s P s B ] ¢ —

T T T T

w( w@ wi y,

e Computations from x, to ¢, form a chain: use the chain rule!
e Derivatives of £, w.r.t. layer j or before go through x()

M 0ty axV)
owl) T ox() pwl)
Ay 9ty axW) i
T = a0 a0  (recursion!)
. oL ot
° o = ==
Start: 7% = 5
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. sadkPropagation
Local Jacobians

X, =x© x@ x@ x¥=p ¢,

— o p? o po) o ¢
w(]) W(}) W(S) yn
¢ |Local computations at layer j: % and a%(ﬂ)

e Partial derivatives of hY) with respect to layer weights and
input to the layer

¢ Local Jacobian matrices, can compute by knowing what the
layer does

¢ The start of the process can be computed from knowing the
loss function, 2 = &

¢ Another local Jacobian

e The rest is going recursively from output to input, one layer

i i 0ln_ i ot
at a time, accumulating £ into a vector %2
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N vzl
Back-Propagation Spelled Out for J = 3

X, =x x@ x@ x¥=p ¢,
— 0 WD s P s B s ¢ ——o
w( w ) Y,
o _ _0tn_
ox® — op aw(h
Ay B 9xO)
ow® T 9xB) ow) My 9l
oy 8tp 5xB ow ow®
ox) T o9xB) ox(2)
Oln 9ty 0x) 9,
ow@ T 9x(@) ow(@) @)
ow
Ay By 9xB3
ax(M) — ox@ ox(1) . .
oy 0l ox (Jacobians in blue are local)
aw( — ax(M ow
Ay 9ty ox(M)

ox@ 7 9x(1) 9x(0)

)
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I 0000
A Google Deep Dream Image

¢ Train a network to recognize animals (yields w)
e Set X, = random noise image, y = dog

* Minimize ((y, h(Xo)) rather than Ly(w)



I ol ool
Convolutional Layers

A layer with input x € R? and output y € R® has e neurons,
each with d gains and one bias

e Total of (d + 1)e weights to be trained in a single layer

e Forimages, d, e are in the order of hundreds of thousands
or even millions

e Too many parameters
e Convolutional layers are layers restricted in a special way
¢ Many fewer parameters to train

¢ Also some justification in terms of heuristic principles (see
notes)
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I ol ool
A Convolutional Layer

e Convolution + bias:a=x*xv+b

e Example: 3 x 4 input image X, 2 x 2 kernel v = [

[“Same” style convolution]

ViV

Vor|Voo

Vi V1o

VitV 1o

Vor| Voo

v
ot

v
o}

Voo
V1o

Vo1
V14

|

¢ Do you want to see this as one convolution with v (plus bias)

or as 12 neurons with the same weights?
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~ Convolutional Neural Networks
“Local” Neurons

¢ Neurons are now “local”

e Just means that many coefficients are zero:
010100
0 0 VO() v()l
0 0 VIO V”

e |f a neuron is viewed as being connected to all input pixels,
then the 12 neurons share their nonzero weights

e So a convolutional layer is the same as a fully-connected
layer where each neuron has many weights clamped to
zero, and the remaining weights are shared across neurons
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. Comolutionl Neural Networks
There is Still a Gain Matrix

v(}(]

VOI

vl 1

0 1 2 3 4

0 0

1 11 10 0

2 0l v00 0

31010]0]0|0
X

e Neuron number 6 (starting at 0):
a2 = Vy1X12 + VioX13 + Vo1 Xa2 + VooXoz + b
e Activation number six a;» = VI[6,:] x where

\

~

01 2 3

12

.
X :(Xoo,Xo1,X02,X03,X107X11,X12,X13,X207X21,X22,X23)
V[67 :]: (07 07 07 07 07 07 V117V107 07 07 V017 VOO)
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Gain Matrix for a Convolutional Layer

a=xxv+b=Vx+b

r amp 17 Viq V1o 0 0 Vo1 Voo 0 0 0 0 0 0 r Xo0 1
aoy 0 Viq V10 0 Vo1 Voo 0 0 0 0 0 X01
E 0 0 Vi1 Vi 0 0 Vo1 Voo 0 0 0 0 Xp2
aps 0 0 0 Vi1 V1o 0 0 Vo1 Voo 0 0 0 X3
aig 0 0 0 0 Vi1 V1o 0 Vo1 Voo 0 0 X10
aq _ 0 0 0 0 0 Vi1 V1o 0 0 Vo1 Voo 0 X11 b
ap - 0 0 0 0 0 0 Viq V1o 0 0 Vo1 Voo Xq2
a3 0 0 0 0 0 0 0 Viq V10 0 0 Vo1 X413
ag 0 0 0 0 0 0 0 0 Vit Vio 0 0 X20
apq 0 0 0 0 0 0 0 0 0 Vit Vio 0 Xo1
agp 0 0 0 0 0 0 0 0 0 0 Vit Vio Xop

L ap3 A 0 0 0 0 0 0 0 0 0 0 0 Viq L Xo3 A

e A “regular” layer with many zeros and shared weights
[Boundary neurons have fewer nonzero weights]
e Zeros cannot be changed during training
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. Comolutionl Neural Networks
Stride

e Activation ag; is often similar to a; ;.1 and aj1
* Images often vary slowly over space
e Activations are redundant

¢ Reduce the redundancy by computing convolutions with a
stride s, greater than one

¢ Only compute every s, output values in dimension m

e Qutput size shrinks from d; x d» to about d; /sy x d>/s»
e Typically s, = s (same stride in all dimensions)

e |ayers get smaller and smaller because of stride

e Multiscale image analysis, efficiency
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L comolutoraleunl Networks |
Max Pooling

¢ Another way to reduce output resolution is max pooling
e This is a layer of its own, separate from convolution

e Consider k x k windows with stride s

e Often s = k (adjacent, non-overlapping windows)

¢ For each window, output the maximum value

e Qutputis about d;/s x d>/s

¢ Returns highest response in window, rather than the
response in a fixed position

e More expensive than strided convolution because the entire
convolution needs to be computed before the max is found
in each window

¢ No longer very popular
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The Input Layer of AlexNet

e AlexNet circa 2012, classifies color images into one of 1000

categories
e Trained on ImageNet, a large database with millions of

labeled images

convolution
kernel

output
y =(p(a))

response maps p(a)

feature maps a

receptive field Input X
of convolution
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A more Compact Drawing

eceptive field
of convolution

input x

224
response maps p(a)
feature maps a
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AlexNet

T

55X55X9

224x224x3

27x27x96

3 =

13x13x192

13x13x192

13x13x128

|

dense

204

dense

dense

dense

dense

8x1 2048x1 1000x1

dense
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o et
AlexNet Numbers

e |nputis 224 x 224 x 3 (color image)
e First layer has 96 feature maps of size 55 x 55

¢ A fully-connected first layer would have about
224 x 224 x 3 x 55 x 55 x 96 ~ 4.4 x 10'° gains

e With convolutional kernels of size 11 x 11, there are only
96 x 112 = 11,616 gains
¢ That’s a big deal! Locality and reuse

e Most of the complexity is in the last few, fully-connected
layers, which still have millions of parameters

e More recent neural networks have much lighter final layers,
but many more layers

e There are also fully convolutional neural networks
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The State of the Art of Image Classification

¢ ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)

e Based on ImageNet,1.4 million images, 1000 categories
(Fei-Fei Li, Stanford)

¢ Three different competitions:
* (Classification:
® One label per image, 1.2M images available for training, 50k
for validation, 100k withheld for testing
e Zero-one loss for evaluation, 5 guesses allowed
® [ocalization: Classification, plus bounding box on one
instance
Correct if > 50% overlap with true box
e Detection: Same as localization, but find every instance in
the image. Measure the fraction of mistakes (false positives,
false negatives)
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Image classification

Steel drum 1
i
' | Scale Scale
} Steel drum T-shirt T-shirt
] Folding chair steel drum Giant panda
! Loudspeaker Drumstick Drumstick
: Mud turtle Mud turtle
| L =" |
Ground truth : Accuracy: 1 Accuracy: 1 Accuracy: 0

steel drum S'"gle‘ObleCt localization

Accuracy: 1 Accuracy: 0 Accuracy: 0

Ground truth
Object detection
K i

Steel drum Person Folding Steel drum Person Steel drum Person Folding chair

bicroptond]

Ground truth

AP: 1.0 1.0 1.0 1.0 AP: 0.0 05 1.0 0.3 AP: 1.0 0.7 0.5 0.9

[Image from Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge, Int'l. J. Comp. Vision 115:211-252, 2015]
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| TheStleofthe Antofmage Classiication
Difficulties of ILSVRC

e Images are “natural.” Arbitrary backgrounds, different sizes,
viewpoints, lighting. Partially visible objects

¢ 1,000 categories, subtle distinctions. Example: Siberian
husky and Eskimo dog

¢ Variations of appearance within one category can be
significant (how many lamps can you think of?)

e What is the label of one image? For instance, a picture of a
group of people examining a fishing rod was labeled as
“reel”
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e R GG
Errors on Image Classification

e 2010: 28.2 percent
e 2017: 2.3 percent (ensemble of several deep networks)

e Improvement results from both architectural insights
(residuals, squeeze-and-excitation networks, ...) and
persistent engineering

¢ A book on “tricks of the trade in deep learning!”
* Problem solved? Only on ImageNet!
¢ “Meta-overfitting”
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