Back-Propagation and Networks for Recognition

COMPSCI 527 — Computer Vision

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline

- Loss and Risk
- 2 Back-Propagation
- 3 Convolutional Neural Networks
- 4 AlexNet
- 5 The State of the Art of Image Classification

・ 同 ト ・ ヨ ト ・ ヨ ト

Training is Empirical Risk Minimization

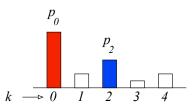
- Classifier network: $\mathbf{p} = h(\mathbf{x}, \mathbf{w}) \in \mathbb{R}^{K}$, then $\hat{y} = \arg \max \mathbf{p}$
- Define a loss l(y, ŷ): How much do we pay when the true label is y and the network says ŷ?
- Risk is average loss over training set $T = \{(\mathbf{x}_1, y_1), \dots (\mathbf{x}_N, y_N)\}$: $L_T(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^N \ell_n(\mathbf{w})$ with $\ell_n(\mathbf{w}) = \ell(y_n, \arg\max_k h(\mathbf{x}_n, \mathbf{w}))$
- Determine network weights **w** that yield a low risk L_T (**w**) over **w** $\in \mathbb{R}^m$
- Use Stochastic Gradient Descent because *m* is large and *L*_T(**w**) is a sum of many terms
- Two large numbers: m and N
- We need $\nabla L_B(\mathbf{w})$ and therefore $\nabla \ell_n(\mathbf{w})$ over mini-batches B

3

< ロ > < 同 > < 回 > < 回 > < - > <

The 0-1 Loss is Useless

- Example: K = 5 classes, scores $\mathbf{p} = h(\mathbf{x}_n; \mathbf{w})$ as in figure
- True label $y_n = 2$, predicted label $\hat{y}_n = 0$ because $p_0 > p_{y_n} = p_2$. Therefore, the loss is 1



- Changing w by an inifinitesimal amount may reduce but not close the gap between p₀ and p₂: loss stays 1
- That is, $\nabla \ell_n(\mathbf{w}) = \frac{\partial \ell_{0.1}}{\partial \mathbf{w}} = 0$
- Gradient provides no information towards reducing the gap!

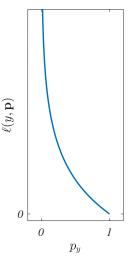
(口) (同) (三) (三) …

The Cross-Entropy Loss

- We need to compute the loss on the score **p**, not on prediction ŷ_n
- Use *cross-entropy loss* on the score **p** as a proxy loss

 $\ell(y,\mathbf{p}) = -\log p_y$

- Unbounded loss for total misclassification
- Differentiable, nonzero gradient everywhere
- Meshes well with the soft-max



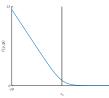
Example, Continued

- Last layer before soft-max has activations $\mathbf{z} \in \mathbb{R}^{K}$
- Soft-max has output $\mathbf{p} = \sigma(\mathbf{z})$ with $p_k = \frac{e^{z_k}}{\sum_{i=0}^4 e^{z_i}} \in \mathbb{R}^5$
- $p_k > 0$ for all k and $\sum_{k=0}^4 p_k = 1$
- Ideally, if the correct class is y = 2, we would like output p to equal q = [0, 0, 1, 0, 0], the one-hot encoding of y
- That is, $q_y = q_2 = 1$ and all other q_j are zero
- $\ell(y, \mathbf{p}) = -\log p_y = -\log p_2$
- When **p** approaches **q** we have $p_y \rightarrow 1$ and $\ell(y, \mathbf{p}) \rightarrow 0$
- When **p** is far from **q** we have $p_y \to 0$ and $\ell(y, \mathbf{p}) \to \infty$

(日)

Example, Continued

Cross-entropy loss meshes well with soft-max



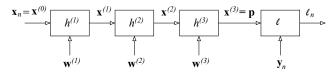
•
$$\ell(y, \mathbf{p}) = -\log p_y = -\log \frac{e^{z_y}}{\sum_{j=0}^4 e^{z_j}} = \log(\sum_{j=0}^4 e^{z_j}) - z_y$$

- When $z_y \gg z_{y'}$ for all $y' \neq y$ we have $\log(\sum_{j=0}^4 e^{z_j}) \approx \log e^{z_y} = z_y$ so that $\ell(y, \mathbf{p}) \to 0$
- When z_y ≪ z_{y'} for some y' ≠ y we have log(∑_{j=0}⁴ e^{z_j}) ≈ c (c effectively independent of z_y) so that ℓ(y, p) → -∞ linearly (Actual plot depends on all values in z)
- This is a "soft hinge loss" in **z** (not in **p**)

Back-Propagation

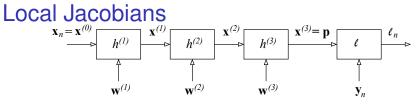
• We need $\nabla L_B(\mathbf{w})$ over some mini-batch *B* and therefore

$$abla \ell_n(\mathbf{w}) = \frac{\partial \ell_n}{\partial \mathbf{w}} = \left(\frac{\partial \ell_n}{\partial \mathbf{w}_1}, \dots, \frac{\partial \ell_n}{\partial \mathbf{w}_J}\right)^T$$
 for a network with *J* layers



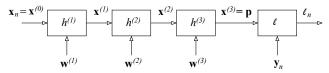
- Computations from \mathbf{x}_n to ℓ_n form a chain: use the chain rule!
- Derivatives of l_n w.r.t. layer j or before go through x^(j)

$$\frac{\partial \ell_n}{\partial \mathbf{w}^{(l)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(l)}} \frac{\partial \mathbf{x}^{(l)}}{\partial \mathbf{w}^{(l)}}$$
$$\frac{\partial \ell_n}{\partial \mathbf{x}^{(l-1)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(l)}} \frac{\partial \mathbf{x}^{(l)}}{\partial \mathbf{x}^{(l-1)}} \quad \text{(recursion!)}$$
$$\Rightarrow \text{ Start: } \frac{\partial \ell_n}{\partial \mathbf{x}^{(l)}} = \frac{\partial \ell}{\partial \mathbf{p}}$$



- Local computations at layer *j*: $\frac{\partial \mathbf{x}^{(j)}}{\partial \mathbf{w}^{(j)}}$ and $\frac{\partial \mathbf{x}^{(j)}}{\partial \mathbf{x}^{(j-1)}}$
- Partial derivatives of *h*^(*j*) with respect to layer weights and input to the layer
- Local Jacobian matrices, can compute by knowing what the layer does
- The start of the process can be computed from knowing the loss function, $\frac{\partial \ell_n}{\partial \mathbf{x}^{(J)}} = \frac{\partial \ell}{\partial \mathbf{p}}$
- Another local Jacobian
- The rest is going recursively from output to input, one layer at a time, accumulating $\frac{\partial \ell_n}{\partial w^{(j)}}$ into a vector $\frac{\partial \ell_n}{\partial w}$

Back-Propagation Spelled Out for J = 3

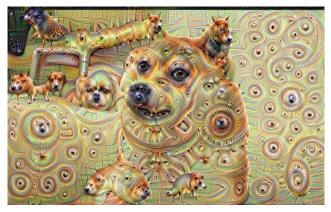


$\frac{\partial \ell_n}{\partial \mathbf{x}^{(3)}} = 1$	<u>)</u> 0
$\frac{\partial \ell_n}{\partial \ell_n}$	$\partial \ell_n \ \partial \mathbf{x}^{(3)}$
$\frac{\partial \mathbf{w}^{(3)}}{\partial \ell_n} =$	$\frac{\partial \mathbf{x}^{(3)}}{\partial \ell_n} \frac{\partial \mathbf{w}^{(3)}}{\partial \mathbf{x}^{(3)}}$
∂ℓn	$\frac{\partial \mathbf{x}^{(3)}}{\partial \ell_n} \frac{\partial \mathbf{x}^{(2)}}{\partial \mathbf{x}^{(2)}}$
$\frac{\partial \mathbf{w}^{(2)}}{\partial \ell_n} = \mathbf{w}^{(2)}$	$\frac{\partial \mathbf{x}^{(2)}}{\partial \ell_n} \frac{\partial \mathbf{w}^{(2)}}{\partial \mathbf{x}^{(2)}}$
$\partial \ell_n$	$\frac{\partial \mathbf{x}^{(2)}}{\partial \ell_n} \frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{x}^{(1)}}$
$\frac{\partial \mathbf{w}^{(1)}}{\left(\frac{\partial \ell_n}{\partial \mathbf{w}}\right)} =$	$\frac{\partial \mathbf{x}^{(1)}}{\partial \mathbf{w}^{(1)}} \frac{\partial \mathbf{w}^{(1)}}{\partial \mathbf{x}^{(1)}}$
$\left(\frac{\partial S(\eta)}{\partial \mathbf{x}^{(0)}}\right) =$	$\overline{\partial \mathbf{x}^{(1)}} \overline{\partial \mathbf{x}^{(0)}}$

$$\frac{\partial \ell_n}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial \ell_n}{\partial \mathbf{w}^{(1)}} \\ \frac{\partial \ell_n}{\partial \mathbf{w}^{(2)}} \\ \frac{\partial \ell_n}{\partial \mathbf{w}^{(3)}} \end{bmatrix}$$

(Jacobians in blue are local)

A Google Deep Dream Image



- Train a network to recognize animals (yields w)
- Set $\mathbf{x}_0 =$ random noise image, y = dog
- Minimize $\ell(y, h(\mathbf{x}_0))$ rather than $L_T(\mathbf{w})$

Convolutional Layers

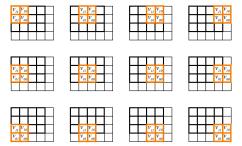
- A layer with input **x** ∈ ℝ^d and output **y** ∈ ℝ^e has *e* neurons, each with *d* gains and one bias
- Total of (d + 1)e weights to be trained in a single layer
- For images, *d*, *e* are in the order of hundreds of thousands or even millions
- Too many parameters
- Convolutional layers are layers restricted in a special way
- Many fewer parameters to train
- Also some justification in terms of heuristic principles (see notes)

ヘロマ ふぼう くほう くほう

A Convolutional Layer

- Convolution + bias: $\mathbf{a} = \mathbf{x} * \mathbf{v} + b$
- Example: 3×4 input image **x**, 2×2 kernel **v** = $\begin{vmatrix} v_{00} & v_{01} \\ v_{10} & v_{11} \end{vmatrix}$

["Same" style convolution]



 Do you want to see this as one convolution with v (plus bias) or as 12 neurons with the same weights?

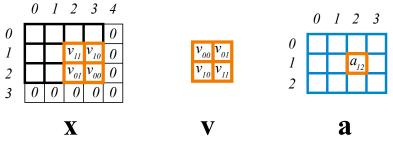
・ 同 ト ・ ヨ ト ・ ヨ ト

"Local" Neurons

- Neurons are now "local"
- Just means that many coefficients are zero:

- If a neuron is viewed as being connected to all input pixels, then the 12 neurons share their *nonzero* weights
- So a convolutional layer is the same as a fully-connected layer where each neuron has many weights clamped to zero, and the remaining weights are *shared* across neurons

There is Still a Gain Matrix



• Neuron number 6 (starting at 0):

 $a_{12} = v_{11}x_{12} + v_{10}x_{13} + v_{01}x_{22} + v_{00}x_{23} + b$

• Activation number six $a_{12} = V[6, :] \mathbf{x}$ where

$$\mathbf{x} = (x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{22}, x_{23})^T \\ V[6,:] = (0, 0, 0, 0, 0, 0, v_{11}, v_{10}, 0, 0, v_{01}, v_{00})$$

э

< ロ > < 同 > < 回 > < 回 > .

Gain Matrix for a Convolutional Layer

$$\mathbf{a} = \mathbf{x} * \mathbf{v} + b = V\mathbf{x} + b$$

Г	a ₀₀ ·	1	Г	V11	V10	0	0	V ₀₁	V ₀₀	0	0	0	0	0	0	٦Г	x ₀₀	1
	a ₀₁			0	V11	<i>v</i> ₁₀	0	Ó	V ₀₁	<i>v</i> ₀₀	0	0	0	0	0		x ₀₁	
	a ₀₂			0	0	V11	V10	0	0	V ₀₁	<i>v</i> ₀₀	0	0	0	0		x ₀₂	
	a ₀₃			0	0	0	V11	V10	0	Ó	V ₀₁	<i>v</i> ₀₀	0	0	0		x ₀₃	
	a ₁₀			0	0	0	0	V11	<i>v</i> ₁₀	0	0	V ₀₁	<i>v</i> ₀₀	0	0		x ₁₀	
	a ₁₁			0	0	0	0	0	V11	V10	0	0	V ₀₁	<i>v</i> ₀₀	0		x ₁₁	+ b
	a ₁₂	=		0	0	0	0	0	0	V11	V10	0	0	V ₀₁	V ₀₀		x ₁₂	+ 0
	a ₁₃			0	0	0	0	0	0	0	V11	V10	0	0	V ₀₁		x ₁₃	
	a ₂₀			0	0	0	0	0	0	0	0	V11	V10	0	Ó		x ₂₀	
	a ₂₁			0	0	0	0	0	0	0	0	0	V11	<i>v</i> ₁₀	0		x ₂₁	
i	a ₂₂	1	İ	0	0	0	0	0	0	0	0	0	0	V11	V10	11	x ₂₂	i
L	a ₂₃		L	0	0	0	0	0	0	0	0	0	0	0	V11	ΓL	x ₂₃	1

- A "regular" layer with many zeros and shared weights [Boundary neurons have fewer nonzero weights]
- Zeros cannot be changed during training

(同) (ヨ) (ヨ)

Stride

- Activation a_{ij} is often similar to $a_{i,j+1}$ and $a_{i+1,j}$
- Images often vary slowly over space
- Activations are redundant
- Reduce the redundancy by computing convolutions with a *stride s_m* greater than one
- Only compute every *s_m* output values in dimension *m*
- Output size shrinks from $d_1 \times d_2$ to about $d_1/s_1 \times d_2/s_2$
- Typically $s_m = s$ (same stride in all dimensions)
- · Layers get smaller and smaller because of stride
- Multiscale image analysis, efficiency

-

Max Pooling

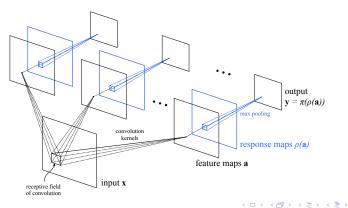
- Another way to reduce output resolution is max pooling
- This is a layer of its own, separate from convolution
- Consider *k* × *k* windows with stride *s*
- Often s = k (adjacent, non-overlapping windows)
- For each window, output the maximum value
- Output is about $d_1/s \times d_2/s$
- Returns highest response in window, rather than the response in a fixed position
- More expensive than strided convolution because the entire convolution needs to be computed before the max is found in each window
- No longer very popular

-

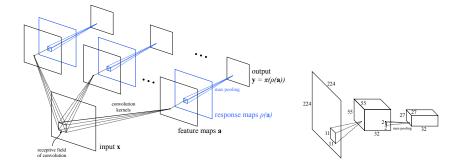
・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

The Input Layer of AlexNet

- AlexNet *circa* 2012, classifies color images into one of 1000 categories
- Trained on ImageNet, a large database with millions of labeled images

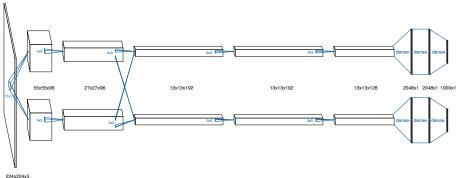


A more Compact Drawing



э

AlexNet



æ

<ロ> <同> <同> <同> < 同> < 同>

AlexNet Numbers

- Input is $224 \times 224 \times 3$ (color image)
- First layer has 96 feature maps of size 55×55
- A fully-connected first layer would have about $224 \times 224 \times 3 \times 55 \times 55 \times 96 \approx 4.4 \times 10^{10}$ gains
- With convolutional kernels of size 11 \times 11, there are only 96 \times 11^2 = 11,616 gains
- That's a big deal! Locality and reuse
- Most of the complexity is in the last few, fully-connected layers, which still have millions of parameters
- More recent neural networks have much lighter final layers, but many more layers
- There are also fully convolutional neural networks

-

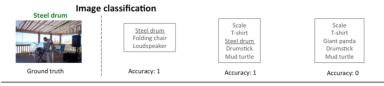
・ 同 ト ・ ヨ ト ・ ヨ ト

The State of the Art of Image Classification

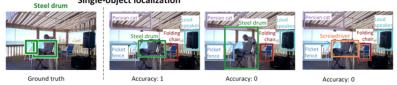
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Based on ImageNet,1.4 million images, 1000 categories (Fei-Fei Li, Stanford)
- Three different competitions:
 - Classification:
 - One label per image, 1.2M images available for training, 50k for validation, 100k withheld for testing
 - Zero-one loss for evaluation, 5 guesses allowed
 - *Localization*: Classification, plus bounding box on one instance

Correct if \geq 50% overlap with true box

 Detection: Same as localization, but find every instance in the image. Measure the fraction of mistakes (false positives, false negatives)



Single-object localization



Object detection

[Image from Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge, Int'l. J. Comp. Vision 115:211-252, 2015]

Difficulties of ILSVRC

- Images are "natural." Arbitrary backgrounds, different sizes, viewpoints, lighting. Partially visible objects
- 1,000 categories, subtle distinctions. Example: Siberian husky and Eskimo dog
- Variations of appearance within one category can be significant (how many lamps can you think of?)
- What is the label of one image? For instance, a picture of a group of people examining a fishing rod was labeled as "reel."

(口) (同) (三) (三) …

Errors on Image Classification

- 2010: 28.2 percent
- 2017: 2.3 percent (ensemble of several deep networks)
- Improvement results from both architectural insights (residuals, squeeze-and-excitation networks, ...) and persistent engineering
- A book on "tricks of the trade in deep learning!"
- Problem solved? Only on ImageNet!
- "Meta-overfitting"