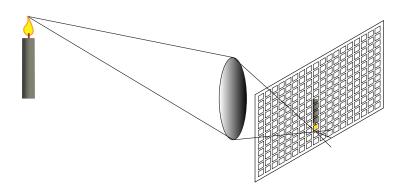
Image Motion

COMPSCI 527 — Computer Vision

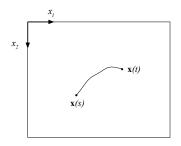
Outline

- Image Motion
- 2 Constancy of Appearance
- Motion Field and Optical Flow
- 4 The Aperture Problem
- 6 Estimating the Motion Field
- 6 The Lucas-Kanade Tracker

Continuous and Discrete Image



Motion Field and Displacement

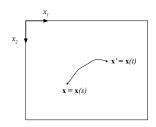


- Follow the image projection $\mathbf{x}(t)$ of a single world point
- Displacement: $\mathbf{d}(t,s) = \mathbf{x}(t) \mathbf{x}(s)$, a difference in positions
- Motion field: $\mathbf{v}(t) = \frac{d\mathbf{x}(t)}{dt}$, an instantaneous velocity
- A field b/c it can be defined for every x in the image plane

Constancy of Appearance

- Images do not move
- What is assumed to remain constant across images?
- Motion estimation is impossible without such an assumption
- Most generic assumption: The appearance of a point does not change with time or viewpoint
- If two image points in two images correspond, they look the same
- "Appearance:" Image *irradiance* $e(\mathbf{x}, t)$ (brightness)
- If colors differ, so do brightnesses most of the time, so color does not help much
- We only consider gray images and video from now on

Constancy of Appearance



- If two image points in two images correspond, they look the same
- If \mathbf{x} at time s and \mathbf{x}' at time t correspond, then $e(\mathbf{x}, s) = e(\mathbf{x}', t)$ (finite-displacement formulation)
- Equivalently, $\frac{de(\mathbf{x}(t),t)}{dt} = 0$ (differential formulation)
- This is the key constraint for motion estimation

The Brightness Change Constraint Equation

- The appearance of a point does not change with time or viewpoint: $\frac{de(\mathbf{x}(t),t)}{dt} = 0$
- Total derivative, not partial:

$$\frac{de(\mathbf{x}(t),\ t)}{dt}\ \stackrel{\mathsf{def}}{=}\ \mathsf{lim}_{\Delta t \to 0}\ \frac{e(\mathbf{x}(t+\Delta t),\ t+\Delta t) - e(\mathbf{x}(t),\ t)}{\Delta t}$$

• Use chain rule on $\frac{de(\mathbf{x}(t),t)}{dt} = 0$ to obtain the Brightness Change Constraint Equation (BCCE)

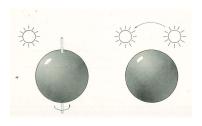
$$\frac{\partial \mathbf{e}}{\partial \mathbf{x}^T} \frac{\partial \mathbf{x}}{\partial t} + \frac{\partial \mathbf{e}}{\partial t} = \mathbf{0}$$

- $\mathbf{v} \stackrel{\text{def}}{=} \frac{d\mathbf{x}}{dt}$ is the unknown motion field
- This is the key constraint for motion estimation

(Compare:
$$\frac{\partial e(\mathbf{x}(t),t)}{\partial t} \stackrel{\text{def}}{=} \lim_{\Delta t \to 0} \frac{e(\mathbf{x}(t), t + \Delta t) - e(\mathbf{x}(t), t)}{\Delta t}$$
)

Motion Field and Optical Flow

Extreme violations of constancy of appearance:



B. K. P. Horn, Robot Vision, MIT Press, 1986

- III-defined distinction:
 - Motion field ≈ true motion
 - Optical flow ≈ locally observed motion
- Still assume constancy of appearance almost everywhere
 - What else can we do?

The Aperture Problem

Issues arise even when the appearance is constant

BCCE:
$$\frac{\partial e}{\partial \mathbf{x}^T}\mathbf{v} + \frac{\partial e}{\partial t} = 0$$

• One equation in two unknowns: the aperture problem

The Aperture Problem

BCCE:
$$\frac{\partial e}{\partial \mathbf{x}^T}\mathbf{v} + \frac{\partial e}{\partial t} = 0$$

- The BCCE is always under-determined: the aperture problem
- Cannot recover motion based on point measurements alone
- Can at most recover the *normal component* along the gradient $\nabla e(\mathbf{x}) = \frac{\partial e}{\partial \mathbf{x}^T}$ (if the gradient is nonzero):

$$\mathbf{v}(\mathbf{x}) \stackrel{\text{def}}{=} \|\nabla e(\mathbf{x})\|^{-1} [\nabla e(\mathbf{x})]^T \mathbf{v}(\mathbf{x})$$

Smoothness and Motion Boundaries

- The assumption of constancy of appearance yields one equation in two unknowns at every point in the image
- To solve for **v**, we need further assumptions
- The motion field $\mathbf{v}:\mathbb{R}^2\to\mathbb{R}^2$ is usually modeled as piecewise smooth in space
- Smoothness: nearby points move similarly
- BCCE is solved in the LSE sense, and an additional regularization term is added to penalize deviations from smoothness
- Smoothness holds almost everywhere, but not everywhere
- Motion discontinuities are smooth image curves called motion boundaries

Estimating the Motion Field

- Because of the aperture problem, we can only estimate several displacement vectors d or motion field vectors v simultaneously, not each individually
- Estimation problems are coupled across the image
- Global estimation methods
 - A data term measures deviations from BCCE at every pixel in the image
 - A smoothness term measures deviations of the motion field v(x) from smoothness
 - Minimize a linear combination of the two types of terms
 - Will see some global methods later

Local Estimation Methods

- Local methods are an alternative to global ones
- Basic idea:
 - The image displacement d in a small window around a pixel x is assumed to be constant over the window (extreme local smoothness)
 - Write one BCCE for every pixel in the window
 - Solve for the one displacement that satisfies all these equations as much as possible
 - A *linear system* to be solved (in the LSE sense)
 - We will need to account for the difference between velocity and displacement
- These are (feature) window tracking methods

Window Tracking

- Given images f(x) and g(x), a point x_f in image f, and a square window W(x_f) of side-length 2h + 1 centered at x_f, what are the coordinates x_g = x_f + d*(x_f) of the corresponding window's center in image g?
- $\mathbf{d}^*(\mathbf{x}_f) \in \mathbb{R}^2$ is the *displacement* of that point feature
- Assumption 1: The whole window translates
- Assumption 2: **d***(**x**_f) ≪ h

General Window Tracking Strategy

- Let $w(\mathbf{x})$ be the indicator function of $W(\mathbf{0})$
- Measure the *dissimilarity* between $W(\mathbf{x}_f)$ in f and a candidate window $W(\mathbf{x}_f + \mathbf{d})$ in g with the *loss*

$$L(\mathbf{x}_f, \mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) - f(\mathbf{x})]^2 w(\mathbf{x} - \mathbf{x}_f)$$

- Minimize $L(\mathbf{x}_f, \mathbf{d})$ over \mathbf{d} : $\mathbf{d}^*(\mathbf{x}_f) = \arg\min_{\mathbf{d} \in R} L(\mathbf{x}_f, \mathbf{d})$
- The search range $R \subseteq \mathbb{R}^2$ is a square centered at the origin
- Half-side of R is $\ll h$

Obvious Failure Points

Multiple motions in the same window

(Less dramatic cases arise as well)

 Actual motion large compared with h (We'll come back to this later)

A Softer Window

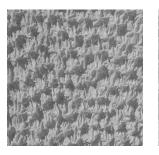
• Make $w(\mathbf{x})$ a (truncated) Gaussian rather than a box

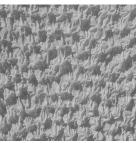
$$w(\mathbf{x}) \propto \begin{cases} e^{\frac{1}{2} \left(\frac{\|\mathbf{x}\|}{\sigma}\right)^2} & \text{if } |x_1| \leq h \text{ and } |x_2| \leq h \\ 0 & \text{otherwise} \end{cases}$$

- Dissimilarity $L(\mathbf{x}_f, \mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) f(\mathbf{x})]^2 w(\mathbf{x} \mathbf{x}_f)$ depends more on what's around the window center
- Reduces the effects of multiple motions
- Does not eliminate them

How to Minimize $L(\mathbf{x}_f, \mathbf{d})$?

- Method 1: Exhaustive search over a grid of d
- Advantages: Unlikely to be trapped in local minima





- Disadvantage: Fixed resolution
- Accurate motion is sometimes necessary
- Using a very fine grid would be very expensive
- · Exhaustive search may provide a good initialization

How to Minimize $L(\mathbf{x}_f, \mathbf{d})$?

- Method 2: Use a gradient-descent method
- Search space has low dimension ($\mathbf{d} \in \mathbb{R}^2$), so we can use Newton's method for faster convergence
- Compute gradient and Hessian of $L(\mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) f(\mathbf{x})]^2 w(\mathbf{x} \mathbf{x}_f)$ (omitted \mathbf{x}_f from arguments of L for simplicity)
- Take Newton steps
- Technical difficulty: the unknown ${\bf d}$ appears inside $g({\bf x}+{\bf d})$, and computing a Hessian would require computing second-order derivatives of an image, which is available only through its pixels
- Second derivatives of images are very sensitive to noise

The Lucas-Kanade Tracker, 1981

- Instead of computing the Hessian of $L(\mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) f(\mathbf{x})]^2 w(\mathbf{x} \mathbf{x}_f),$ linearize $g(\mathbf{x} + \mathbf{d}) \approx g(\mathbf{x}) + [\nabla g(\mathbf{x})]^T \mathbf{d}$
- This brings **d** "outside *g*"
- L(d) is now quadratic in d, and we can find a minimum in closed form by taking the gradient (no Hessian required)
- Only differentiate the image once to get $\nabla g(\mathbf{x})$
- Since the solution d₁ relies on an approximation, we iterate:
 Shift g by d₁ to make the residual d smaller, and repeat
- This method works for losses that are sums of squares, and is called the Newton-Raphson method

Lucas-Kanade Overall Scheme

- Initialize: **d**₀ = **0**
- Find a displacement \mathbf{s}_1 by minimizing linearized $L(\mathbf{d}_0 + \mathbf{s})$
- Shift g by \mathbf{s}_1 to obtain g_1
- Accumulate: $\mathbf{d}_1 = \mathbf{d}_0 + \mathbf{s}_1$
- Find a displacement s₂ by minimizing linearized L(d₁ + s)
- Shift g_1 by \mathbf{s}_2 to obtain g_2
- Accumulate: d₂ = d₁ + s₂
- . . .

Lucas-Kanade Derivation

- Let $\mathbf{d}_t = \mathbf{s}_1 + \ldots + \mathbf{s}_t$ (accumulated shifts, initially $\mathbf{0}$)
- Let $g_t(\mathbf{x}) \stackrel{\text{def}}{=} g(\mathbf{x} + \mathbf{d}_t)$
- We seek $\mathbf{d}_{t+1} = \mathbf{d}_t + \mathbf{s}$ by minimizing the following over \mathbf{s} $L(\mathbf{d}_t + \mathbf{s}) = \sum_{\mathbf{x}} [g_t(\mathbf{x} + \mathbf{s}) f(\mathbf{x})]^2 \ w(\mathbf{x} \mathbf{x}_t)$ with linearization $g_t(\mathbf{x} + \mathbf{s}) \approx g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s}$, so that

$$\begin{split} L(\mathbf{d}_t + \mathbf{s}) &= \sum_{\mathbf{x}} [g_t(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})]^2 \ w(\mathbf{x} - \mathbf{x}_f) \\ &\approx \sum_{\mathbf{x}} [g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})]^2 \ w(\mathbf{x} - \mathbf{x}_f) \ , \end{split}$$

a quadratic function of s

Lucas-Kanade Derivation, Cont'd

- Gradient of $L(\mathbf{d}_t + \mathbf{s}) \approx \sum_{\mathbf{x}} [g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} f(\mathbf{x})]^2 w(\mathbf{x} \mathbf{x}_f)$ is $\nabla L(\mathbf{d}_t + \mathbf{s}) \approx 2 \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) \{g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} f(\mathbf{x})\} w(\mathbf{x} \mathbf{x}_f)$
- Setting to zero yields

The Core System of Lucas-Kanade

Linear, 2×2 system

$$As = b$$

where

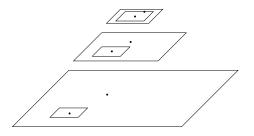
$$A = \sum_{\mathbf{x}}
abla g_t(\mathbf{x}) [
abla g_t(\mathbf{x})]^T \ w(\mathbf{x} - \mathbf{x}_f)$$

and

$$\mathbf{b} = \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) [f(\mathbf{x}) - g_t(\mathbf{x})] \ w(\mathbf{x} - \mathbf{x}_f) \ .$$

- Solution yields s_t (real-valued)
- Shift image g_t is by \mathbf{s}_t by bilinear interpolation $\to g_{t+1}$
- Accumulate shifts $\mathbf{d}_{t+1} = \mathbf{d}_t + \mathbf{s}_t$ $(g_{t+1} \text{ is } g \text{ shifted by } \mathbf{d}_t)$
- This shift makes f and g_t more similar within the windows
- Repeat until convergence. Final \mathbf{d}_t is the answer

If Motion is Large, Track in a Pyramid



- A large motion at fine level is small at coarse level
- (Only drawing one frame per level, for simplicity)
- Start at the coarsest level (same window size at all levels)
- Multiply solution d by 2 to initialize tracking at the next level
- Motion is progressively refined at every level