# Deep Networks for Image-to-Image Prediction

COMPSCI 527 — Computer Vision

< 回 > < 回 > < 回 >

# Outline

Image-to Image Prediction

2 Motion Estimation Classical Approaches Methods based on Neural Networks FlowNet, 2015 Unsupervised Training?

Image Segmentation
 Architecture
 Loss Functions

A > < = > < =

### Image-to Image Prediction

- Recognition: 1 image  $\rightarrow K$  label scores (funnel)
- Motion estimation: 2 images  $\rightarrow$  2 images
- Image segmentation: 1 image → K score images (K soft-max scores at every pixel)



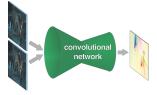


www.irisa.fr/texmex/people/jain

sthalles.github.io/deep\_segmentation\_network/

# Architecture of Image-to Image Predictors

- The output is as large as the input
- Retinotopic output: values map to pixel locations
- The funnel-like architecture cannot be used
- An hourglass architecture is used instead



(image from Dosovitskiy et al., FlowNet, 2015)

- A. k. a. contraction-expansion, encoder-decoder, ...
- Let's see image motion estimation first, then image segmentation

A (1) < (1) < (1) </p>

## **Classical Approaches to Motion Estimation**

- For decades, global methods were cast as optimization problems to be solved at inference time
- Roughly: Find a flow field  $\mathbf{u}(\mathbf{x})$  such that  $\int [g(\mathbf{x} + \mathbf{u}(\mathbf{x})) - f(\mathbf{x})]^2 d\mathbf{x} + \lambda \int \left\| \frac{\partial \mathbf{u}}{\partial \mathbf{x}^T} \right\|^2 d\mathbf{x} \text{ is small}$
- The resulting normal equation is discretized, and leads to a large, linear system in the unknowns u(x), one 2-vector per pixel
- The flow is not smooth at motion boundaries, various techniques have been proposed to improve results there
- However, these methods seem to work fairly well, see https://people.csail.mit.edu/celiu/OpticalFlow/

# Why Use Neural Networks?

A method based on neural networks needs many examples
 (x, y) = ((f, g), u)



• I > • I > •

# Why Use Neural Networks?

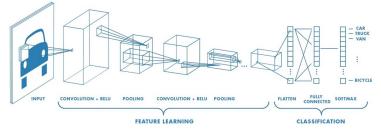
- Annotation is difficult: Hundreds of thousands or millions of flow vectors per example
- How do we know the flow at every pixel anyway?
- So why bother with deep learning?
- Replace a complex optimization algorithm run at inference time with a deep network
- At inference time, feed two images to a network and read the result at the output: *fast inference*
- Training is an even more complex optimization problem, but runs at training time
- Optimization assumes a very specific motion model. The neural network does not
- Therefore, a neural network might do well even where the optimization algorithm doesn't

# Training Data and Loss

- Big question: How to annotate training data?
- Current best answer: computer graphics
- Sintel: http://sintel.is.tue.mpg.de
- Main limitation: Is graphics a good proxy for real video?
- · Computer graphics is getting better and better
- Not hard to make good movies look worse!
- Loss: Discrepancy between true flow  $\bm{v}(\bm{x})$  and computed flow  $\bm{u}(\bm{x})$
- End-Point Error (EPE):  $\sqrt{\frac{1}{|\Omega|}\sum_{\mathbf{x}\in\Omega}\|\mathbf{u}(\mathbf{x})-\mathbf{v}(\mathbf{x})\|^2}$

Architectures: The Recognition Funnel

A CNN used for classification looks like a funnel:



- Image in, category out
- Representation becomes more and more abstract
- For flow, the output is image-like, so the funnel won't work

・ 同 ト ・ 三 ト ・ 三

#### Architectures: The Image-to-Image Hourglass

However, abstraction is still useful

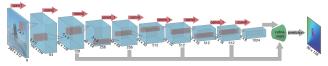


- Flow at low resolution may be coarse but less ambiguous
- First build an abstract view, then restore detail

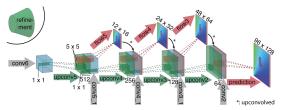


# Architecture Detail: FlowNet, 2015

• Encoder (or contraction)



Decoder (or expansion)



Note the gray skip connections to restore detail

# How to Decode: Up-Convolution

- We don't just want to upsample: Upsampling needs to be trainable
- Up-convolution is one way to upsample
- Best understood in the 1D case first
- Convolution with stride reduces resolution
- How to increase resolution instead?

・ 同 ト ・ ヨ ト ・ ヨ ト

# Strided Convolution in Matrix Form

$$g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x)$$

• Example:  $\mathbf{f} \in \mathbb{R}^{12}$ , stride s = 2, "same" format  $\mathbf{k} = [a, b, c, d, e]$ 

• Then,  $\mathbf{g} \in \mathbb{R}^6$  and  $\mathbf{g} = K\mathbf{f}$  with  $K \in \mathbb{R}^{6 \times 12}$ 

# **Up-Convolution**

 The up-convolution corresponding to **g** = K**f** is defined as φ = K<sup>T</sup>**g**, not the inverse of K

| $g_0$ | $g_1$ | $g_2$ | <b>g</b> 3 | $g_4$ | $g_5$ |
|-------|-------|-------|------------|-------|-------|
| С     | е     |       |            |       |       |
| b     | d     |       |            |       |       |
| а     | С     | е     |            |       |       |
|       | b     | d     |            |       |       |
|       | а     | С     | е          |       |       |
|       |       | b     | d          |       |       |
|       |       | а     | С          | е     |       |
|       |       |       | b          | d     |       |
|       |       |       | а          | С     | е     |
|       |       |       |            | b     | d     |
|       |       |       |            | а     | С     |
|       |       |       |            |       | b     |

э

Rewrite Up-Convolution as a Convolution

• *Dilute* **g** into  $\gamma$  with stride s = 2:

 $(g_0, g_1, g_2, g_3, g_4, g_5) 
ightarrow (g_0, 0, g_1, 0, g_2, 0, g_3, 0, g_4, 0, g_5, 0)$ 

| $\gamma_0$<br>$g_0$ | $\gamma_1 \\ 0$ | $\gamma_2 \\ g_1$ | $\gamma_3 \\ 0$ | $\gamma_4$<br>$g_2$ | $_0^{\gamma_5}$ | $\gamma_6 \\ g_3$ | $\gamma_7$ 0 | $\gamma_8 \\ g_4$ | $\gamma_9 \\ 0$ | $\gamma_{10}$<br>$g_5$ | ${}^{\gamma_{11}}_{0}$ |
|---------------------|-----------------|-------------------|-----------------|---------------------|-----------------|-------------------|--------------|-------------------|-----------------|------------------------|------------------------|
| С                   |                 | е                 |                 |                     |                 |                   |              |                   |                 |                        |                        |
| b                   |                 | d                 |                 |                     |                 |                   |              |                   |                 |                        |                        |
| а                   |                 | С                 |                 | е                   |                 |                   |              |                   |                 |                        |                        |
|                     |                 | b                 |                 | d                   |                 |                   |              |                   |                 |                        |                        |
|                     |                 | а                 |                 | С                   |                 | е                 |              |                   |                 |                        |                        |
|                     |                 |                   |                 | b                   |                 | d                 |              |                   |                 |                        |                        |
|                     |                 |                   |                 | а                   |                 | С                 |              | е                 |                 |                        |                        |
|                     |                 |                   |                 |                     |                 | b                 |              | d                 |                 |                        |                        |
|                     |                 |                   |                 |                     |                 | а                 |              | С                 |                 | е                      |                        |
|                     |                 |                   |                 |                     |                 |                   |              | b                 |                 | d                      |                        |
|                     |                 |                   |                 |                     |                 |                   |              | а                 |                 | С                      |                        |
|                     |                 |                   |                 |                     |                 |                   |              |                   |                 | b                      |                        |

- Square matrix
- · Can fill new columns with anything we like

# Up-Convolution as a Convolution

| $\gamma_0$<br>$g_0$ | $\gamma_1 \\ 0$ | $\gamma_2$<br>$g_1$ | $\gamma_3 \\ 0$ | $\gamma_4$<br>$g_2$ | $\gamma_5 \\ 0$ | $\gamma_6 g_3$ | $\gamma_7 \\ 0$ | $\gamma_8$<br>$g_4$ | $\gamma_9 \\ 0$ | $\gamma_{10}$<br>$g_5$ | $\gamma_{11} \\ 0$ |
|---------------------|-----------------|---------------------|-----------------|---------------------|-----------------|----------------|-----------------|---------------------|-----------------|------------------------|--------------------|
| С                   | d               | е                   |                 |                     |                 |                |                 |                     |                 |                        |                    |
| b                   | С               | d                   | е               |                     |                 |                |                 |                     |                 |                        |                    |
| а                   | b               | С                   | d               | е                   |                 |                |                 |                     |                 |                        |                    |
|                     | а               | b                   | С               | d                   | е               |                |                 |                     |                 |                        |                    |
|                     |                 | а                   | b               | С                   | d               | е              |                 |                     |                 |                        |                    |
|                     |                 |                     | а               | b                   | С               | d              | е               |                     |                 |                        |                    |
|                     |                 |                     |                 | а                   | b               | С              | d               | е                   |                 |                        |                    |
|                     |                 |                     |                 |                     | а               | b              | С               | d                   | е               |                        |                    |
|                     |                 |                     |                 |                     |                 | а              | b               | С                   | d               | е                      |                    |
|                     |                 |                     |                 |                     |                 |                | а               | b                   | С               | d                      | е                  |
|                     |                 |                     |                 |                     |                 |                |                 | а                   | b               | С                      | d                  |
|                     |                 |                     |                 |                     |                 |                |                 |                     | а               | b                      | С                  |

• Up-convolution is the convolution of a diluted input with the reverse of the original kernel *k*, that is, with

$$\kappa(y) \stackrel{\text{def}}{=} k(p-1-y)$$

• Up-convolution can be written as follows:

$$\phi(\mathbf{x}) = \sum_{\mathbf{y}=\mathbf{0}}^{\mathbf{p}-\mathbf{1}} \kappa(\mathbf{y}) \gamma(\mathbf{x}-\mathbf{y})$$

< 同 > < 回 > < 回 > .

# **Up-Convolution Summary**

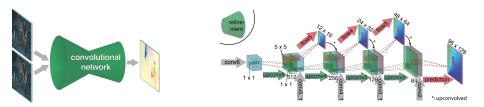
- To reduce resolution, convolve and then sample
- Efficiently, do convolution with stride:  $g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x)$
- To increase resolution, dilute and then convolve

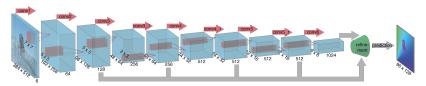
• Efficiently, do diluted convolution  

$$\phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x - y)$$
where  $\gamma(y) = \begin{cases} g\left(\frac{y}{s}\right) & \text{if } y \stackrel{s}{=} 0\\ 0 & \text{otherwise} \end{cases} \text{ for } 0 \le y \le sn$ 

・ 同 ) ( ヨ ) ( ヨ ) …

# FlowNet, 2015





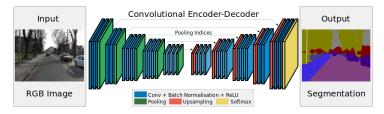
Demos at https://www.youtube.com/watch?v=JSzUdVBmQP4

# **Unsupervised Training?**

- Loss based on End-Point Error:  $\| \boldsymbol{u}(\boldsymbol{x}) \boldsymbol{v}(\boldsymbol{x}) \|^2$
- Requires supervision v
- Loss based on Photometric Error + Regularization Term:  $[g(\mathbf{x} + \mathbf{u}(\mathbf{x})) - f(\mathbf{x})]^2 + \lambda \left\| \frac{\partial \mathbf{u}}{\partial \mathbf{x}^T} \right\|^2$
- Only *f*, *g* are needed
- Issue: Correct flow implies small loss, but the converse is not necessarily true, mainly because of the aperture problem
- Works, but not as well
- However, we can bring massive amounts of data to bear

・ 同 ト ・ ヨ ト ・ ヨ ト

# Architectures for Image Segmentation



https://mi.eng.cam.ac.uk/projects/segnet/ (2015)

- Overall architecture is still an encoder-decoder
- Input: A single  $h \times w$  image
- Output: An  $h \times w \times K$  array of *label scores* for K classes p(r, c, k) > 0 and  $\sum_{k=0}^{K-1} p(r, c, k) = 1$
- When K = 2 only output p(r, c, 1), called a *heat map*

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

# Loss and Class Imbalance

- Cross-entropy loss is used at every pixel
- Average over image for a per-image loss
- Class imbalance: Distribution of training samples is uneven
- Example: segment buildings in sparsely populated areas



https://www.supermap.com/en/html/SuperMap\_GIS\_news534.html

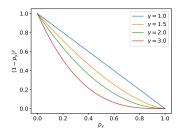
- Trivial classifier achieves low risk, high accuracy
- · General issue for classification, not only segmentation

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Loss Functions

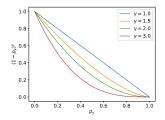
# The Focal Loss

- Cross entropy:  $\ell_{xe}(y, \mathbf{p}) = -\log p_y$
- Focal loss:  $\ell_f(y, \mathbf{p}) = \alpha_y (1 p_y)^{\gamma} \ell_{xe}(y, \mathbf{p})$
- Balance classes:  $\alpha_k = \frac{1/n_k}{\sum_{j=0}^{K-1} 1/n_j}$
- $(1 p_y)^{\gamma}$  is decreasing and convex when gamma > 1



< ロ > < 同 > < 回 > < 回 > .

# Focal Loss and Hard Examples



- Convex term  $(1 p_y)^{\gamma}$  emphasizes hard examples
- Hard example: Misclassified or low-margin
- The trivial classifier misclassifies all rare samples
- Many samples in the more populated classes are likely to have a high margin
- Focal loss avoids trivial predictors