Deep Networks for Image-to-Image Prediction
Outline

1. Image-to Image Prediction

2. Motion Estimation
   - Classical Approaches
   - Methods based on Neural Networks
     FlowNet, 2015
   - Unsupervised Training?

3. Image Segmentation
   - Architecture
   - Loss Functions
Image-to Image Prediction

- Recognition: 1 image $\rightarrow K$ label scores (funnel)
- Motion estimation: 2 images $\rightarrow$ 2 images
- Image segmentation: 1 image $\rightarrow K$ score images ($K$ soft-max scores at every pixel)

www.irisa.fr/texmex/people/jain

sthalles.github.io/deep_segmentation_network/
Architecture of Image-to Image Predictors

- The output is as large as the input
- *Retinotopic output*: values map to pixel locations
- The funnel-like architecture cannot be used
- An *hourglass* architecture is used instead

![Diagram of convolutional network](image from Dosovitskiy et al., FlowNet, 2015)

- A. k. a. *contraction-expansion*, *encoder-decoder*, ...
- Let’s see image motion estimation first, then image segmentation
Classical Approaches to Motion Estimation

- For decades, global methods were cast as optimization problems to be solved at inference time.
- Roughly: Find a flow field \( u(x) \) such that
  \[
  \int [g(x + u(x)) - f(x)]^2 \, dx + \lambda \int \| \frac{\partial u}{\partial x} \|^2 \, dx \text{ is small}
  \]
- The resulting normal equation is discretized, and leads to a large, linear system in the unknowns \( u(x) \), one 2-vector per pixel.
- The flow is not smooth at motion boundaries, various techniques have been proposed to improve results there.
- However, these methods seem to work fairly well, see https://people.csail.mit.edu/celiu/OpticalFlow/
Why Use Neural Networks?

- A method based on neural networks needs many examples

\[(x, y) = ((f, g), u)\]
Why Use Neural Networks?

- Annotation is difficult: Hundreds of thousands or millions of flow vectors per example
- How do we know the flow at every pixel anyway?
- So why bother with deep learning?
- *Replace a complex optimization algorithm run at inference time with a deep network*
- At inference time, feed two images to a network and read the result at the output: *fast inference*
- Training is an even more complex optimization problem, but runs at training time
- Optimization assumes a very specific motion model. The neural network does not
- Therefore, *a neural network might do well even where the optimization algorithm doesn’t*
Training Data and Loss

- Big question: How to annotate training data?
- Current best answer: computer graphics
- Sintel: [http://sintel.is.tue.mpg.de](http://sintel.is.tue.mpg.de)
- Main limitation: Is graphics a good proxy for real video?
- Computer graphics is getting better and better
- Not hard to make good movies look worse!
- Loss: Discrepancy between true flow $v(x)$ and computed flow $u(x)$
  
  \[
  \text{End-Point Error (EPE): } \sqrt{\frac{1}{|\Omega|} \sum_{x \in \Omega} \|u(x) - v(x)\|^2}
  \]
Architectures: The Recognition Funnel

- A CNN used for classification looks like a funnel:
  - Image in, category out
  - Representation becomes more and more abstract
  - For flow, the output is image-like, so the funnel won’t work
Architectures: The Image-to-Image Hourglass

- However, abstraction is still useful

- Flow at low resolution may be coarse but less ambiguous
- First build an abstract view, then restore detail
Architecture Detail: FlowNet, 2015

- **Encoder** (or contraction)

- **Decoder** (or expansion)

- Note the gray *skip connections* to restore detail
How to Decode: Up-Convolution

- We don’t just want to upsample: Upsampling needs to be trainable
- *Up-convolution* is one way to upsample
- Best understood in the 1D case first
- Convolution with stride reduces resolution
- How to increase resolution instead?
Strided Convolution in Matrix Form

\[ g(y) = \sum_{x=0}^{p-1} k(x)f(sy - x) \]

- Example: \( f \in \mathbb{R}^{12} \), stride \( s = 2 \), “same” format
  \( k = [a, b, c, d, e] \)
- Then, \( g \in \mathbb{R}^6 \) and \( g = Kf \) with \( K \in \mathbb{R}^{6 \times 12} \)

\[
K = \begin{bmatrix}
    c & b & a \\
    e & d & c & b & a \\
    e & d & c & b & a \\
    e & d & c & b & a \\
    e & d & c & b & a \\
    e & d & c & b \\
\end{bmatrix}
\]
Up-Convolution

- The up-convolution corresponding to $g = Kf$ is defined as $\varphi = K^Tg$, not the inverse of $K$.

$c$  $e$

$b$  $d$

$a$  $c$

$b$
Rewrite Up-Convolution as a Convolution

- *Dilate* \( g \) into \( \gamma \) with stride \( s = 2 \):
  \[
  (g_0, g_1, g_2, g_3, g_4, g_5) \rightarrow (g_0, 0, g_1, 0, g_2, 0, g_3, 0, g_4, 0, g_5, 0)
  \]

- Square matrix
- Can fill new columns with anything we like
Up-Convolution as a Convolution

- Up-convolution is the convolution of a diluted input with the reverse of the original kernel $k$, that is, with

$$\kappa(y) \overset{\text{def}}{=} k(p - 1 - y)$$

- Up-convolution can be written as follows:

$$\phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x - y)$$
Up-Convolution Summary

- To reduce resolution, convolve and then sample
- Efficiently, do convolution with stride:
  \[ g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x) \]
- To increase resolution, dilute and then convolve
- Efficiently, do diluted convolution
  \[ \phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x - y) \]

where \( \gamma(y) = \begin{cases} g\left(\frac{y}{s}\right) & \text{if } y \equiv 0 \\ 0 & \text{otherwise} \end{cases} \) for \( 0 \leq y \leq sn \)
FlowNet, 2015

Demos at https://www.youtube.com/watch?v=JSzUdVBmQP4
Unsupervised Training?

- Loss based on End-Point Error: \( \| \mathbf{u}(\mathbf{x}) - \mathbf{v}(\mathbf{x}) \|^2 \)
- Requires supervision \( \mathbf{v} \)
- Loss based on Photometric Error + Regularization Term:
  \[
  [g(\mathbf{x} + \mathbf{u}(\mathbf{x})) - f(\mathbf{x})]^2 + \lambda \left\| \frac{\partial \mathbf{u}}{\partial \mathbf{x}^T} \right\|^2
  \]
- Only \( f, g \) are needed
- Issue: Correct flow implies small loss, but the converse is not necessarily true, mainly because of the aperture problem
- Works, but not as well
- However, we can bring massive amounts of data to bear
Architectures for Image Segmentation

- Overall architecture is still an encoder-decoder
- Input: A single $h \times w$ image
- Output: An $h \times w \times K$ array of label scores for $K$ classes
  \[ p(r, c, k) > 0 \quad \text{and} \quad \sum_{k=0}^{K-1} p(r, c, k) = 1 \]
- When $K = 2$ only output $p(r, c, 1)$, called a heat map

Loss and Class Imbalance

- Cross-entropy loss is used at every pixel
- Average over image for a per-image loss
- *Class imbalance*: Distribution of training samples is uneven
- Example: segment buildings in sparsely populated areas


- Trivial classifier achieves low risk, high accuracy
- General issue for classification, not only segmentation
The Focal Loss

- Cross entropy: $\ell_{xe}(y, p) = -\log p_y$
- Focal loss: $\ell_f(y, p) = \alpha_y (1 - p_y)^\gamma \ell_{xe}(y, p)$
- Balance classes: $\alpha_k = \frac{1/n_k}{\sum_{j=0}^{K-1} 1/n_j}$
- $(1 - p_y)^\gamma$ is decreasing and convex when $\textit{gamma} > 1$
Focal Loss and Hard Examples

- Convex term \((1 - p_y)^\gamma\) emphasizes hard examples
- Hard example: Misclassified or low-margin
- The trivial classifier misclassifies all rare samples
- Many samples in the more populated classes are likely to have a high margin
- Focal loss avoids trivial predictors