Rigid Geometric Transformations and the Pinhole Camera Model

COMPSCI 527 — Computer Vision

Outline

- Coordinates and Vector Operators
 Orthogonal Projection
 Cross Product
 Triple Product
- Rigid Transformations
 Rotations
 Coordinate Transformations
- 3 The Pinhole Camera

Rigid Transformations

- 3D reconstruction: Given corresponding points in two (or more) images taken from different viewpoints, find the relative pose of the two cameras and 3D coordinates of the world points
- The relative motion between a camera and an otherwise static scene is a rigid transformation: rotation + translation
- Reconstruction techniques also require knowing about othogonal projection, cross product, triple product
- All vectors are in \mathbb{R}^3

Orthogonal Projection

- Definition of projection of a onto b ≠ 0:
 the point p on the line through b that is closest to a
- **p** is on the line through **b**: $\mathbf{p} = x\mathbf{b}$ for some x
- **p** is closest to **a** when (\mathbf{a}, \mathbf{p}) is orthogonal to **b**: $\mathbf{b}^T (\mathbf{a} x\mathbf{b}) = 0$, which yields $x = \frac{\mathbf{b}^T \mathbf{a}}{\mathbf{b}^T \mathbf{b}}$ so that

$$\mathbf{p} = x\mathbf{b} = \mathbf{b} x = \frac{\mathbf{b} \mathbf{b}^T}{\mathbf{b}^T \mathbf{b}} \mathbf{a}$$

The Orthogonal-Projection Matrix

- $\mathbf{p} = P_{\mathbf{b}} \mathbf{a}$ where $P_{\mathbf{b}} = \frac{\mathbf{b} \mathbf{b}^T}{\mathbf{b}^T \mathbf{b}}$
- P_b is rank 1, symmetric, and idempotent: $P_b^n = P_b$ for n > 0

Norm squared of p:

$$\|\mathbf{p}\|^2 =$$

- When ||b|| = 1,
- Note: Orthogonal projection is not camera projection

The Cross Product

 Geometry: The cross product of two three-dimensional vectors a and b is a vector c orthogonal to both a and b, oriented so that the triple a, b, c is right-handed, and with magnitude

$$\|\mathbf{c}\| = \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \theta$$

where θ is the smaller angle between **a** and **b**

- The magnitude of a × b is the area of a parallelogram with sides a and b
- Algebra: $\mathbf{c} = \mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$ = $(a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x)^T$
- Easy to check that $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

The Cross-Product Matrix

- $\mathbf{c} = (a_y b_z a_z b_y, \ a_z b_x a_x b_z, \ a_x b_y a_y b_x)^T$ is linear in \mathbf{b}
- Therefore, there exists a 3×3 matrix $[\mathbf{a}]_{\times}$ such that

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} = [\mathbf{a}]_{\times} \mathbf{b}$$
 $\mathbf{c} = \begin{bmatrix} c_x \\ c_y \\ c_z \end{bmatrix} = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$

• The matrix $[\mathbf{a}]_{\times}$ is skew-symmetric: $[\mathbf{a}]_{\times}^T = -[\mathbf{a}]_{\times}$

The Triple Product

- Definition: $det([\mathbf{a}, \mathbf{b}, \mathbf{c}]) = \mathbf{a}^T(\mathbf{b} \times \mathbf{c})$ = $a_x(b_yc_z - b_zc_y) - a_y(b_xc_z - b_zc_x) + a_z(b_xc_y - b_yc_x)$
- Signed volume of parallelepiped

• Easy to check: $\mathbf{a}^T(\mathbf{b} \times \mathbf{c}) = \mathbf{b}^T(\mathbf{c} \times \mathbf{a}) = \mathbf{c}^T(\mathbf{a} \times \mathbf{b}) = -\mathbf{a}^T(\mathbf{c} \times \mathbf{b}) = -\mathbf{c}^T(\mathbf{b} \times \mathbf{a}) = -\mathbf{b}^T(\mathbf{a} \times \mathbf{c})$

Multiple Reference Frames

- If we associate a reference system to a camera and the camera moves, or we consider multiple cameras, or we consider one camera and the world, we have multiple reference systems
- Point coordinates are x, y, z
- Left superscript denotes which reference system coordinates are expressed in: ¹y
- Subscripts denote which point or reference system we are talking about: x₂
- ²y₃ is the y coordinate of point 3 in reference system 2

Multiple Reference Frames

- A zero left superscript can be omitted: ${}^{0}z = z$
- The origin of a reference system is t (for "translation")
- We always have ${}^{i}\mathbf{t}_{i} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- If i, j, k are the unit points of a reference system, we always have
 ['i, 'j, 'k,] = I, the 3 × 3 identity matrix

Rotations

- No translation: ${}^{0}\mathbf{t}_{1}=\mathbf{t}_{1}=\left[\begin{array}{c}0\\0\\0\end{array}\right]$
- Both systems right-handed
- i₁, j₁, k₁ are the unit vectors of reference system 1 expressed in reference system 0
- Given $\mathbf{p} = {}^{0}\mathbf{p}$, what is ${}^{1}\mathbf{p}$?

Rotations

$$\mathbf{p} = {}^{1}x \, \mathbf{i}_{1} + {}^{1}y \, \mathbf{j}_{1} + {}^{1}z \, \mathbf{k}_{1}$$

$${}^{1}x = \mathbf{i}_{1}^{T}\mathbf{p} , \quad {}^{1}y = \mathbf{j}_{1}^{T}\mathbf{p} , \quad {}^{1}z = \mathbf{k}_{1}^{T}\mathbf{p}$$

$${}^{1}\mathbf{p} = \begin{bmatrix} {}^{1}x \\ {}^{1}y \\ {}^{1}z \end{bmatrix} = \begin{bmatrix} \mathbf{i}_{1}^{T}\mathbf{p} \\ \mathbf{j}_{1}^{T}\mathbf{p} \end{bmatrix} = R_{1} \, \mathbf{p}$$
where $R_{1} = {}^{0}R_{1} = \begin{bmatrix} \mathbf{i}_{1}^{T} \\ \mathbf{j}_{1}^{T} \\ \mathbf{k}_{1}^{T} \end{bmatrix}$ (unit vectors are the *rows*)

Rotations in General

- More generally, ${}^b\mathbf{p} = {}^a\!R_b{}^a\mathbf{p}$ where ${}^a\!R_b = \begin{bmatrix} {}^a\mathbf{I}_b^T \\ {}^a\mathbf{j}_b^T \\ {}^a\mathbf{k}_b^T \end{bmatrix}$
- Rotations are reversible, so there exists ${}^{b}R_{a} = {}^{a}R_{b}^{-1}$
- ${}^{b}R_{a} = {}^{a}R_{b}^{T}$ because ${}^{a}R_{b}$ is orthogonal
- Cross-product is covariant with rotations:

$$(Ra) \times (Rb) = R(a \times b)$$

Coordinate Transformation

- A.k.a. rigid transformation
- First translate, then rotate: ${}^{1}\mathbf{p} = R_{1}(\mathbf{p} \mathbf{t}_{1})$
- Inverse: $\mathbf{p} = R_1^T {}^1 \mathbf{p} + \mathbf{t}_1$
- Generally, if ${}^b\mathbf{p} = {}^aR_b({}^a\mathbf{p} {}^a\mathbf{t}_b)$ then ${}^a\mathbf{p} = {}^bR_a({}^b\mathbf{p} {}^b\mathbf{t}_a)$ where ${}^bR_a = {}^aR_b^T$ and ${}^b\mathbf{t}_a = -{}^aR_b^a\mathbf{t}_b$

The Pinhole Camera

Putting the Image Plane in Front?

In Math, We Can

- Camera reference system (X, Y, Z) is right-handed, Z toward scene
- Distance btw center of projection and principal point: focal distance f
- Canonical image reference system (x, y) has origin at principal point
- *Pixel image reference system* (ξ, η) has origin at top left of sensor
- $\xi = s_x x + \xi_0$ and $\eta = s_y y + \eta_0$ $(s_x, s_y \text{ in pixels/mm})$

The Projection Equations

