Rigid Geometric Transformations and the Pinhole Camera Model

COMPSCI 527 - Computer Vision

Outline

(1) Coordinates and Vector Operators

Orthogonal Projection
Cross Product
Triple Product
(2) Rigid Transformations

Rotations
Coordinate Transformations
(3) The Pinhole Camera

Rigid Transformations

- 3D reconstruction: Given corresponding points in two (or more) images taken from different viewpoints, find the relative pose of the two cameras and 3D coordinates of the world points
- The relative motion between a camera and an otherwise static scene is a rigid transformation: rotation + translation
- Reconstruction techniques also require knowing about othogonal projection, cross product, triple product
- All vectors are in \mathbb{R}^{3}

Orthogonal Projection

- Definition of projection of \mathbf{a} onto $\mathbf{b} \neq \mathbf{0}$: the point \mathbf{p} on the line through \mathbf{b} that is closest to \mathbf{a}
- \mathbf{p} is on the line through \mathbf{b} : $\mathbf{p}=x \mathbf{b}$ for some x
- \mathbf{p} is closest to \mathbf{a} when (\mathbf{a}, \mathbf{p}) is orthogonal to \mathbf{b} :
$\mathbf{b}^{T}(\mathbf{a}-x \mathbf{b})=0$, which yields $x=\frac{\mathbf{b}^{\top} \mathbf{a}}{\mathbf{b}^{\top} \mathbf{b}}$ so that $\mathbf{p}=x \mathbf{b}=\mathbf{b} x=\frac{\mathbf{b b}^{\top}}{\mathbf{b}^{\top} \mathbf{b}} \mathbf{a}$

The Orthogonal-Projection Matrix

- $\mathbf{p}=P_{\mathrm{b}}$ a where $P_{\mathrm{b}}=\frac{\mathbf{b b}^{T}}{\mathbf{b}^{T} \mathrm{~b}}$
- P_{b} is rank 1 , symmetric, and idempotent: $P_{\mathrm{b}}^{n}=P_{\mathrm{b}}$ for $n>0$
- Norm squared of \mathbf{p} :
$\|\mathbf{p}\|^{2}=$
- When $\|\mathbf{b}\|=1$,
- Note: Orthogonal projection is not camera projection

The Cross Product

- Geometry: The cross product of two three-dimensional vectors \mathbf{a} and \mathbf{b} is a vector \mathbf{c} orthogonal to both \mathbf{a} and \mathbf{b}, oriented so that the triple $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is right-handed, and with magnitude

$$
\|\mathbf{c}\|=\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the smaller angle between \mathbf{a} and \mathbf{b}

- The magnitude of $\mathbf{a} \times \mathbf{b}$ is the area of a parallelogram with sides \mathbf{a} and \mathbf{b}
- Algebra: $\mathbf{c}=\mathbf{a} \times \mathbf{b}=\left|\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z}\end{array}\right|$

$$
=\left(a_{y} b_{z}-a_{z} b_{y}, a_{z} b_{x}-a_{x} b_{z}, a_{x} b_{y}-a_{y} b_{x}\right)^{T}
$$

- Easy to check that $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$

The Cross-Product Matrix

- $\mathbf{c}=\left(a_{y} b_{z}-a_{z} b_{y}, a_{z} b_{x}-a_{x} b_{z}, a_{x} b_{y}-a_{y} b_{x}\right)^{T}$ is linear in \mathbf{b}
- Therefore, there exists a 3×3 matrix $[\mathbf{a}]_{\times}$such that

$$
\mathbf{c}=\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}
$$

$$
\mathbf{c}=\left[\begin{array}{c}
c_{x} \\
c_{y} \\
c_{z}
\end{array}\right]=[\quad]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

- The matrix $[\mathbf{a}]_{\times}$is skew-symmetric: $[\mathbf{a}]_{\times}^{T}=-[\mathbf{a}]_{\times}$

The Triple Product

- Definition: $\operatorname{det}([\mathbf{a}, \mathbf{b}, \mathbf{c}])=\mathbf{a}^{\top}(\mathbf{b} \times \mathbf{c})$

$$
=a_{x}\left(b_{y} c_{z}-b_{z} c_{y}\right)-a_{y}\left(b_{x} c_{z}-b_{z} c_{x}\right)+a_{z}\left(b_{x} c_{y}-b_{y} c_{x}\right)
$$

- Signed volume of parallelepiped

- Easy to check: $\mathbf{a}^{T}(\mathbf{b} \times \mathbf{c})=\mathbf{b}^{T}(\mathbf{c} \times \mathbf{a})=\mathbf{c}^{T}(\mathbf{a} \times \mathbf{b})=$ $-\mathbf{a}^{T}(\mathbf{c} \times \mathbf{b})=-\mathbf{c}^{T}(\mathbf{b} \times \mathbf{a})=-\mathbf{b}^{T}(\mathbf{a} \times \mathbf{c})$

Multiple Reference Frames

- If we associate a reference system to a camera and the camera moves, or we consider multiple cameras, or we consider one camera and the world, we have multiple reference systems
- Point coordinates are x, y, z
- Left superscript denotes
which reference system coordinates are expressed in: ${ }^{1} y$
- Subscripts denote which point or reference system we are talking about: x_{2}
- ${ }^{2} y_{3}$ is the y coordinate of point 3 in reference system 2

Multiple Reference Frames

- A zero left superscript can be omitted: ${ }^{0} z=z$
- The origin of a reference system is \mathbf{t} (for "translation")
- We always have ${ }^{i} \mathbf{t}_{i}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- If $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are the unit points of a reference system, we always have
$\left[\begin{array}{ccc}i_{i} & { }^{i} \mathbf{j}_{i} & \left.{ }^{i} \mathbf{k}_{i}\right]=l \text {, } \\ \hline\end{array}\right.$
the 3×3 identity matrix

Rotations

- No translation: ${ }^{0} \mathbf{t}_{1}=\mathbf{t}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- Both systems right-handed
- $\mathbf{i}_{1}, \mathbf{j}_{1}, \mathbf{k}_{1}$ are the unit vectors of reference system 1 expressed in reference system 0
- Given $\mathbf{p}={ }^{0} \mathbf{p}$, what is ${ }^{1} \mathbf{p}$?

Rotations

$$
\begin{aligned}
& \mathbf{p}={ }^{1} \boldsymbol{X} \mathbf{i}_{1}+{ }^{1} y \mathbf{j}_{1}+{ }_{1} \mathbf{z} \mathbf{k}_{1} \\
& { }^{1} \boldsymbol{X}=\mathbf{i}_{1}^{T} \mathbf{p},{ }^{1} \boldsymbol{y}=\mathbf{j}_{1}^{T} \mathbf{p} \\
& { }^{1}, \quad{ }^{1} \boldsymbol{Z}=\mathbf{k}_{1}^{T} \mathbf{p} \\
& { }^{1} \mathbf{p}=\left[\begin{array}{l}
{ }^{1} \boldsymbol{X} \\
{ }^{1} y \\
{ }^{1} \boldsymbol{z}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{i}_{1}^{T} \mathbf{p} \\
\mathbf{j}_{1}^{T} \mathbf{p} \\
\mathbf{k}_{1}^{T} \mathbf{p}
\end{array}\right]=R_{1} \mathbf{p}
\end{aligned}
$$

where $R_{1}={ }^{0} R_{1}=\left[\begin{array}{c}\mathbf{i}_{1}^{T} \\ \mathbf{j}_{1}^{T} \\ \mathbf{k}_{1}^{T}\end{array}\right] \quad$ (unit vectors are the rows)

Rotations in General

- More generally, $\quad{ }^{b} \mathbf{p}={ }^{a} R_{b}{ }^{a} \mathbf{p} \quad$ where $\quad{ }^{a} R_{b}=\left[\begin{array}{c}a \mathbf{i}_{b}^{T} \\ { }_{j} \mathbf{j}_{b}^{T} \\ a \mathbf{k}_{b}^{T}\end{array}\right]$
- Rotations are reversible, so there exists ${ }^{\mathrm{b}} \mathrm{R}_{a}={ }^{a} R_{b}^{-1}$
- ${ }^{b} R_{a}={ }^{a} R_{b}^{T}$ because ${ }^{a} R_{b}$ is orthogonal
- Cross-product is covariant with rotations:
$(R \mathbf{a}) \times(R \mathbf{b})=R(\mathbf{a} \times \mathbf{b})$

Coordinate Transformation

- A.k.a. rigid transformation
- First translate, then rotate: ${ }^{1} \mathbf{p}=R_{1}\left(\mathbf{p}-\mathbf{t}_{1}\right)$
- Inverse: $\mathbf{p}=R_{1}^{T{ }^{1}} \mathbf{p}+\mathbf{t}_{1}$
- Generally, if ${ }^{b} \mathbf{p}={ }^{a} R_{b}\left({ }^{a} \mathbf{p}-{ }^{a} \mathbf{t}_{b}\right)$ then ${ }^{a} \mathbf{p}={ }^{b} R_{a}\left({ }^{b} \mathbf{p}-{ }^{b} \mathbf{t}_{a}\right)$ where ${ }^{b} R_{a}={ }^{a} R_{b}^{T}$ and ${ }^{b} \mathbf{t}_{a}=-{ }^{a} R_{b}{ }^{a} \mathbf{t}_{b}$

The Pinhole Camera

Putting the Image Plane in Front?

In Math, We Can

- Camera reference system (X, Y, Z) is right-handed, Z toward scene
- Distance btw center of projection and principal point: focal distance f
- Canonical image reference system (x, y) has origin at principal point
- Pixel image reference system (ξ, η) has origin at top left of sensor
- $\xi=s_{x} x+\xi_{0} \quad$ and $\quad \eta=s_{y} y+\eta_{0} \quad\left(s_{x}, s_{y}\right.$ in pixels/mm)

The Projection Equations

