Compsci 101

Dictionaries

Susan Rodger
March 1, 2022
stuff is $\{$ 'color': 'black', 1: 2,
'cat': 100, (1, 1): 'yes', 1.5: 3\}

Noam Shazeer Computer Science Duke Alum

The 21 Most Important Googlers You've Never Heard Of

Jay yarow $\square \mathrm{n} \cup \mathrm{g}^{+}$
MAY 5, 2011, 2:38 PM A115,790 •5
Georges Harik and Noam Shazeer created the underlying data that led to AdSense
Harik and Shazeer spent years analyzing
data on webpages, trying to understand
clusters of words and how they worked
together. The data they gather wound up
being used by Google for its AdSense
product, which analyzed webpages for words,
3/1/2and then stuck ads on them.
\mathbf{N} is for ...

- Nested Loops
- All pairs, all pixels, all 2D structures
- None
- Default value for functions if no return
- Newline
-The "In" in a line

Announcements

- Assign 3 Transform due Today!
- Assign 4 is out, due Thursday, March 17
- APT 4 due this Thursday
- APT-5 out Thursday, due March 24
- No lab this week
- A few consulting hours during spring break
- Do not discuss Exam 1 or APT Quiz 1 with anyone until they are handed back

PFTD

- Dictionaries
- Solving Problems with Dictionaries

Code might be

1 if name in students:
2 pos = students.index(name) \# find position of name 3 answer = icecream[pos] \# answer in same pos

If a billion names, this is not efficient
How does this code work?

Problem: Given a name, what is their favorite ice cream?

- Assume you have a lot of people, over 1 million.
- How is the data stored?
- Assume we have parallel lists
- students is list of names
- icecream is list of corresponding favorite ice cream

3/1/22

How does search with .index work?

- Parallel Lists
- Search for name first in students list
- Use index location of name to find favorite ice cream

students =

$\begin{array}{cccc}\text { ['Astrachan', } & \text { 'Sun', } & \text { 'Rodger', } & \text { 'Forbes'] } \\ 0 & 1 & 2 & 3\end{array}$
icecream =
['Chocolate’, ‘Chocolate Chip’, ‘Chocolate Chip’, ‘Strawberry’]

How does search with .index work?

- Parallel Lists
- Search for name first in students list
- Use index location of name to find favorite ice cream Find Rodger's favorite ice cream
students =
['Astrachan', 'Sun', 'Rodger', 'Forbes'] 0

1
2
3
icecream =
['Chocolate’, ‘Chocolate Chip’, ‘Chocolate Chip’, ‘Strawberry']
0
1
2
3
$3 / 1 / 22$

How the-Dictionaryis made

- Using a dictionary is reasonably straight-forward
- We will be clients, not implementers
- Efficiency not a large concern in 101
- Our goal is to just get stuff done ©

Code was easy

- But for a lot of data could take a long time.
- Let's see another way, dictionaries

What is a Dictionary?

- A collection of (key, value) pairs (abstract view)
- Look up key, find the value
- Very, very fast: essentially index by key
- For list a [3] takes same time as a [3000]
- For Dictionary: d["cake"]
- Finding the value associated with "cake"

Dictionaries/Maps

- Dictionaries are another way of organizing data
- Dictionaries are sometimes called maps
- Keys and Values
- Each key maps to a value
- Some keys can map to the same value
- Can change the value a key maps to

How is dictionary different than a list?

- List - have to search for name first
- Dictionary - each key maps to a value
- getting name (or key) is automatic! Fast!

Example

- Each student could be mapped to their favorite ice cream flavor

Implementing a Dictionary/Map Keys map to values

- Create Empty dictionary
somemap $=\{ \}$
- Put in a key and its value
somemap["Forbes"] = "Strawberry"
- Get a value for a dictionary
value = somemap["Forbes"]
- Change a value for a dictionary somemap["Forbes'] = "Chocolate"

Change Astrachan's value somemap["Astrachan"] = Coffee Mocha

Students Ice Cream Flavors

Value could be a set or list

Change Astrachan's value somemap["Astrachan"] = Coffee Mocha

Students
 Ice Cream Flavors

How to use a Dictionary

- Create: d = \{ \}
- d = \{'a': 10, 'b': 100\}
- d = dict([('a', 10), ('b', 100)])
- Insert: d[KEY] = VALUE
- Update/Reassign: d[KEY] = VALUE
- Get a value (like list indexing): d[KEY]
- Keymembership (not values): KEY in d
- No membership check for values

Examples
OUTPUT

```
stuff={}
print(stuff)
print(type(stuff))
stuff['color'] = 'black'
stuff[1] = 2
stuff['cat'] = 100
stuff[(1,1)] = 'yes'
stuff[1.5] = 3
print(stuff)
```


Examples

$d=\{ \}$
d is \{\}
d['color'] = 'black'
d['color'] = 'red'
$d[$ red'] = 'color'
$r=d[d[` r e d \prime]]$
r = d['monkey']

```
        Examples
                                    OUTPUT
    stuff is {'color': 'black', 1: 2,
    'cat': 100, (1, 1): 'yes', 1.5: 3}
print(len(stuff))
stuff[3] = [6, 3, 2]
stuff[[4,7]]='go'
3/1/22 Compsci 101, Spring 2022

\section*{Examples}
```

d = {'a':'cat', 'e':'dog'}

```
d = {'a':'cat', 'e':'dog'}
'dog' in d
'dog' in d
'a' in d
'a' in d
`pig' in d
```

`pig' in d

```

\section*{WOTO-1 Dictionaries} http://bit.ly/101s22-0301-1

\section*{More on using a Dictionary/Map}
- Get all the keys (as a list)
- listKeys = somemap.keys()
- Get all the values (as a list)
- listValues = somemap.values()
- Other methods
- clear - empty dictionary
- items - return (key,value) pairs
- iteritems - return (key,value) pairs more efficiently, iterator - must use with for
- update - update with another dictionary

\section*{More on Dictionary}
- Like lists, but with keys
- KEY - immutable type, unique within dictionary
- VALUE - any type, not unique within dictionary
- Dictionary is unordered collection of (KEY, VALUE) pairs

Examples
```

d = {'a':4, 'e': 3, `b':4 }
v = d.values()
k = d.keys()
p = d.items()
for t in d.items():
print(t)

```

\section*{Problem}
- Given a list of names of people who ate at a restaurant, who ate there the most?
- A name appears more than once if they ate their more than once
- names = ['Sarah', 'Beth', 'Sarah', 'Purnima', 'Beth', 'Beth', 'Purnima']

\section*{Sandwich Bar}

\section*{APT: SandwichBar Search}

\section*{Problem Statement}

It's time to get something to eat and I've come across a sandwich bar. Like most people, I prefer certain types of sandwiches. In fact, I keep a list of the types of sandwiches I like.

The sandwich bar has certain ingredients available. I will list the types of sandwiches I like in order of preference and buy the first sandwich the bar can make for me. In order for the bar to make a sandwich for me, it must include all of the ingredients I desire.

\section*{WOTO-2 Problem Solving}
http:/ / bit.ly/101s22-0301-2

\section*{Sandwich Bar Example}
- available = [ "cheese", "cheese", "cheese", "tomato" ]
- orders = [ "ham ham ham", "water", "pork", "bread", "cheese tomato cheese", "beef" ]

WOTO-3 SandwichBar http://bit.ly/101s22-0301-3

\section*{Assignment 4: Guess Word}
- We give you most of the functions to implement
- Partially for testing, partially for guiding you
- But still more open ended than prior assignments
- If the doc does not tell you what to do:
- Your chance to decide on your own!
- Okay to get it wrong on the first try
- Discuss with TAs and friends, brainstorm!```

