
Role Playing in an Object-Oriented World

Steven K. Andrianoff
David B. Levine

Computer Science Department
St. Bonaventure University
St. Bonaventure, NY 14778
{ska, dlevine}•cs.sbu.edu

Abstract
Role playing exercises are one o f many teaching techniques
commonly employed to drive home lessons about computer
science. Most of the specific role playing described in the
literature, however, relates to algorithm or hardware
design. More recently, the Pedagogical Patterns Project
has published patterns involving role playing in a general
sense. In this paper, we draw on three separate role playing
exercises that we have developed to show that scripted role
playing is a natural and effective way to introduce concepts
of object-oriented design.

combine all o f these, and has been described in various
guises within this community [2, 3, 11].

Role playing exercises as described in the literature vary in
the degree of freedom that they give to their actors. In
some cases, the actions to be taken are left deliberately
vague - in which case the exercise is also an example of
experiential learning; in other cases, the actions are fairly
well or even completely specified. In this case, the
dramatization provides the essence of learning. It is the
latter form of role playing, perhaps better called scripted
role playing, that we address in this paper.

1 Context

The literature suggests that role playing has been a part o f
computer science education for at least fifteen years [12].
Anecdotal evidence o f role playing abounds and many
textbooks suggest role playing exercises as a method o f
building intuition. Various papers have suggested role
playing to teach topics such as hardware design [12],
formal methods [8], or backtracking [9]. More generally, it
has been suggested that it can help with building intuition
regarding understanding of object-oriented design [6, 13].

In general, activities that involve students directly (as
opposed to as passive viewers or listeners) result in better
retention of material. Indeed several of the patterns
identified by the Pedagogical Patterns Project [14] require
students to take an active role in creating understanding;
Group Card Sorting (#39) and Simulation Game Workshop
(#22) are two. When combined with Physical Analogy
(#16), they provide students with a way to absorb new
concepts within familiar settings. Role playing can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or dis~buted for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on sei'vers or to redistribute to lists,
r~luires prior spe,'ific permission and/or a fee.
SIGCSE'02, February 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM 1-58113-473-8/02/0002...$5.00.

In the next section of the paper, we discuss some of the key
concepts from object-oriented design/programming with a
particular eye as to how these concepts might be related to
role playing. Immediately after, we describe three separate
scenarios for which we have written scripts demonstrating
these concepts. The remainder of the paper discusses how
these exercises relate to current thinking about pedagogy,
the successes we have had, and external factors that
influence those successes.

2 Object-orientation and Role Playing
Sebesta [16] says that, "Object oriented methodology
begins with data abstraction, which encapsulates processing
with data objects and hides access to data, and adds
inheritance and dynamic type binding." Implicit in this
description is that the objects intercommunicate in manners
that are more complex than the traditional function call o f
imperative programming languages.

Bergin et. al. [3] state that, "In teaching object systems, a
good metaphor is human beings. People are autonomous,
encapsulated actors, who interact with other similar
objects."

We have combined these two notions and created three
different scripts for the purpose o f introducing concepts of
object-oriented programming. The first of these scripts is a
whimsical play that can be enacted as early as the first day
of an introductory course; it emphasizes the encapsulation

121

and data hiding ideas. The second is a fairly faithful
rendition of the current Advanced Placement Computer
Science Case Study, the Marine Biology Case Study [1]; it
demonstrates intercommunication o f objects within a
moderately complex system. The third is a simulation o f a
game of Chips, a Nim-like game; it demonstrates
inheritance and run-time polymorphism.

2.1 First Day Role Play

One of the requirements for any exercise undertaken on one
o f the first days o f class is that the students need to be able
to begin the exercise without much preparation. The role
play that we use on the first or second day o f classes has
very simple scripts which students can readily master. The
goal of this role playing exercise is to demonstrate the basic
mechanism of message passing. The instructor plays the
role of the main program, asking the students to perform
various tasks. One sample student script is shown below:

You are an Acrobat

When you are asked to Clap, you will be given a
number. Clap your hands that many times.

When you are asked to KneeBend, you will be given
a number. Stand up and sit down that many times. Note
that if you are told "2", then you will stand up twice AND
sit down twice

When you are asked to Count , you will reply
(verbally) with the total number o f exercises you have
done. Note that Clap-ping four times counts as four
exercises, and KneeBend-ing twice counts as two. I f you
have done these things (and only these things) then your
reply should be "6".

The instructor will illustrate message passing by addressing
a student who is an Acrobat with, "John, Clap 5" or "Mary,
KneeBend 2" or "John, Count". The class can observe the
student doing so. Other student actors are asked to perform
various tasks. The tasks chosen emphasize the following
points:

Message passing protocols, i.e. naming an object
and then giving it a request.

• Parameter passing - receiving zero, one, or more
i~arameters.

• Return values - both void and non-void returns
a r e s e e n .

• State o f an obj ect/hidden data - e.g., an Acrobat ' s
Coun t or a Dice 's NumherOfRol ls .

• The difference between class names and object
names (there are multiple instances o f the Acrobat
and Blackboard objects).

• Overloaded method names - some roles have two
tasks with the same name, but different parameter
lists.

• Non-existent methods - an Acrobat is asked to do
a TripleBackFlip.

• Objects communicating with other objects - a
LazyCalculator gets a Calculator to do the dirty
work when it is asked to Add.

• Multiple objects of the same class, e.g. two
Acrobats who have independent exercise counts.

• "Improperly" functioning objects - a Bamboozler
does not Subt rac t in the "normal" manner.

The entire exercise can be completed in fifteen minutes,
leaving plenty o f time for either traditional first-day
activities (e.g. roster/syllabus) or for a debriefing
discussing the role play.

2.2 Marine Biology Case Study

As part o f the Advanced Placement Computer Science
curriculum, students are required to be familiar with a
particular case study. "A ease study is a document that
includes the statement o f a problem, one or more programs
that solve the problem and a written description o f one
expert's path from problem statement to solution
program(s)." [7] Currently, the Marine Biology Case
Study (MBCS) [1] is used. MBCS uses seven interacting
classes and represents a larger program than most students
(and some teachers!) have previously encountered. The
second role playing exercise is designed to give
participants a better understanding of the complex
interactions between the various classes. The scripts are
much more complex than the First Day Role Play and it
takes substantially longer to go through the process. The
script for (one of) the Fish object(s) is shown below:

You are a Fish

Before the role play begins, you will be given an ID
and a location, remember them.

• When asked for your ID, respond by stating the
number aloud.

• When asked for your Locat ion, respond by stating
your location aloud.

• When asked if you AreDefined, respond, "true".

• When asked to ShowMe, respond with the ID th letter
o f the alphabet, e.g. i f your ID is 3, say "C".

• When asked to Move, you will be given an
Environment

1. Cons t ruc t a Neighborhood that will serve as your
list o f empty neighbors.

2. For each of North, South, East, and West (in that
order)

a. Ask the Environment if that location I sEmpty .
b. I f so, ask the Neighborhood to A d d it.

3. Ask that Neighborhood its Size.
4. Ask the RandGen to pick a R a n d o m I n t e g e r from

0 to <The integer from Step 3>-1.

122

5. Ask the Neighborhood to Select passing the
integer from Step 4. (You will be given a location in
response)

6. Set your location to the one from Step 5.
7. Tell the Environment to Update itself based upon

you along with your former location.
8. Tell your Neighborhood to destroy itself.
9. Acknowledge that you are done.

In addition to reinforcing the earlier concepts, this exercise
emphasizes (or in some cases reemphasizes):

• A much greater level o f inter-object
communication than the previous role play. In
fact, the role o f the main program is very minor
indeed.

• The difference between class names and object
names (there are multiple instances of the Fish
objects).

• The difference between object names and internal
data that may be unique (such as ID number).

• The hiding ofplrivate data.

• The ability o f an object to refer to and pass itself
as a parameter to other objects (see Step 7 in the
Move action above).

This exercise takes about fifty to seventy-five minutes to
complete, depending upon the preparation o f the students
and the degree to which "short cuts" are allowed.

2.3 Chips

Chips is a Nim-like game usually featuring two players and
a pile o f chips. The players take turns removing chips from
the pile; whoever removes the last chip wins. The first
player may remove any number - but not all - o f the chips.
Each subsequent player must remove between 1 and twice
the number o f chips removed by the preceding player.

While there are many possible software designs for this
game, the example we show features a ChipsGame class, a
TextDisplay class, and an abstract class Player. Different
concrete player classes are derived from Player, e.g.
OnesPlayer (always removes one chip), RandomPlayer
(chooses a random, but legal, move), and HumanPlayer
(gets input from the user). Each of the Player sub-classes
extends the parent class, keeping the same implementation
of the name() method, hut supplying different
implementations of the getMove0 method.

While larger in scope than the First Day Role Play, this
exercise is considerably smaller than the MBCS Role Play.
Its primary intention is to demonstrate inheritance and
polymorphism. A script for the (abstract) Player appears
below:

You are a Player

• Just before you are constructed, you will be
"claimed" by some other more specific kind of player.
When you are claimed you are to move next to the player
that claimed you. The two of you will be partners for the
remainder of the role play. I f your partner nudges you, take
over for him/her and fulfill the request that he/she was
given. When you are constructed, you will be given your
name as a string. Remember it. Acknowledge that you are
done.

• When you are asked for your Name via a nudge,
simply state it aloud.

• I f you are ever asked to GetMove via a nudge, you
will probably be given a ChipsGame. Ignore it. Simply
explain that, "I know I should be able to do this, but no one
ever taught me how".

and this is the script for the OnesPlayer:

You are a OnesPlayer

• When you are constructed, you will be given your
name as a string. You need to find a (generic) Player and
"claim" him/her. This generic Player should move next to
you. He/She will be your partner for the remainder of the
role play. Begin by asking your Player to c o n s t r u c t

him/herself using the name you were given. From this
point forward, if you cannot do anything you are asked to,
you should ask your Player for help by visibly nudging
him/her; DO NOT SAY ANYTHING ALOUD.

• When you are asked to "GetMove" you will be
given a ChipsGame. Ignore it. Simply respond, "1"

We traditionally run the Chips Role Play twice - once
using a OnesPlayer vs. a RandomPlayer and once with a
OncsPlaycr vs. a HurnanPlaycr. We use small pile sizes (to
create short games) in both instances. Among other points,
the exercise emphasizes:

• The notion that a subclass has all o f the
capabilities of the parent class available to it; even
if it chooses not to use them.

• How a method invocation is passed "up the
inheritance hierarchy" to the nearest ancestor class
that can handle it.

• That when an object is constructed its parent class
is also constructed - as part of the construction of
the original.

• Run-time binding - until a ChipsGame asks a
competitor to GetMove, it is impossible to know
which code will execute.

• A Model-View-Controller architecture.

• In an optional scenario, students can see what
happens if you instantiate a class that is not

123

complete, i.e. that still contains some abstract
methods.

this sense, one can view the role playing exercise as an
example o f the Consistent Metaphor pattern [4].

3 More Than Just Scripts
Socrates said, "The unexamined life is not worth l iv ing"
[15]. More contemporarily, budding lecturers are often
told, "Tell them what you are going to say; then say it; then
tell them what you just said." Experience has shown that
this advice is particularly apt for the use o f scripted role
playing exercises in the classroom.

The benefit o f each o f these exercises is greatly enhanced i f
the experience is discussed afterwards and referenced
frequently as students learn more. We always follow the
actual role playing exercises up with a formal debriefing in
which the bulleted points above (along with several others)
are discussed by the class as a whole. One part o f the
debriefing includes handing out a "Cast o f Characters" so
that everyone is aware of who played which role; this
greatly enhances the discussion.

Any human modeling of a computer process is bound to be
a simplification at some level. These role playing exercises
are no exception. One of the main jobs o f the debriefing
is to discuss these simplifications. (An early version o f the
MBCS role play attempted to stay more closely aligned
with the actual C++ code o f the case study. Although the
modeling was thus more accurate, the exercise bogged
down and participants were more frustrated and learned
less than with the current, more simplified version.)

Since most novice students are expected to write code in
some language as part o f their eoursework, one aspect o f
the discussion concerns the relationship between program
entities and role playing entities. (Also, an interesting side
discussion arises about the difference between a Human,
i.e. flesh and blood, and a HumanPlayer, i.e. a software
entity.)

We also explicitly discuss the various methods we used to
capture the essence o f certain concepts. For instance, we
often have students write their private data on the back o f
the name tags that we issue. In this case, we point out that
while the associated actor can see the data, others can only
get at it through the public interface. (This is perhaps a less
graphic example of the "What Did You Eat For Breakfast?"
pedagogical pattern [5].)

Similarly, in the case of inheritance, we point out not only
why an object is next to one o f its super class (to pass
message requests up the hierarchy), but also why this
communication does not involve speaking as do other
requests (since this action is not a separate method call but
rather simply a deferral o f responsibility).

In general, we use the debriefing session to set up future
discussions and lessons. We have found that as new topics
are introduced, students often refer back to the role playing
exercises to demonstrate/solidify their understanding. In

4 Benefits and Reactions
These exercises have been field tested to varying degrees.
Most popularly, the MBCS Role Play has been used by at
least eight different instructors - either in a class of their
own or in a teacher-training workshop. We have actively
solicited feedback and have learned (and incorporated)
much through this process. Each o f the exercises exhibits
all o f the benefits traditionally ascribed to role playing
exercises. More specifically, they serve well to illuminate
the concepts discussed above. In the ease o f the MBCS
role play, numerous teachers have written to state that,
"[The role play] really enables students to get their minds
around the case study".

In general, the role playing exercises (at least the last two)
help illustrate the f low o f control in a somewhat complex
object-oriented system. Even students who are more
accustomed to the imperative paradigm obtain a
rudimentary understanding o f the differences in a short
amount o f time. Similarly, they illustrate the dynamic
behavior of such a system - which is difficult to do in a
static forum.

There is a lasting effect o f these exercises as well. We
have noticed that people who have gone through the
exercises tend to discuss general object-oriented design in
role playing terms. We recently ran a workshop for
teachers, including the three exercises over the first three
days. On the fourth day, as they were discussing their own
design for a separate (video store) application, the
participants started using the language from the role play to
illuminate design points. In one case, they referred back to
specific portions o f one exercise to clarify a point.
Throughout the discussion, they used the role playing
exercises as touchstones for several different object-
oriented concepts. As a result o f this (and our other)
experience(s), we will be introducing formal role playing
exercises into our software design course starting this fall.

Some of the comments from other instructors who have
used these particular exercises include:

• It really humanizes the programming.

• N o w I understand inheritance.

• Puts [the student] in the mindset o f a designer.

• I plan to use your ideas this year.

Other instructors have found that much o f the value in the
scripts is that they can serve as a base for other
modifications - either in the scripts, or in the stage
instructions. For instance, one teacher we know displays
all o f the private data on the blackboard, but is strict about
not letting the actors look at it (though the "audience" can).
Other teachers have added physical representations of call
stacks to them. Still others are experimenting with

124

different ways to exhibit inheritance in a role playing
situation. These modifications can only lead to better
teaching.

5 Access

Complete scripts along with the "stage instructions" for
each of the three exercises can be found at
http://web.sbu.edu/cs/RolePlay.html. We will certainly be
developing (and collecting) more of these exercises in the
future.

6 Conclusions

Role playing exercises have been used (and suggested) for
use in computer science education for quite some time.
The emergence of object-oriented design and its emphasis
on the interactions of independent actors only increases the
appropriateness of this pedagogical technique. In this
paper, we have discussed three particular scripted role
playing exercises that have been effectively used to
introduce the essential concepts of object-oriented
programming. The exercises serve as a base "which
instructors can modify to emphasize whatever points they
wish. Modifications of the scripts or the stage instructions
can and should be made; any presentation is improved
when it is tailored to its audience.

Most important, however, is the idea that role playing
exercises such as these are effective in building the mind
set needed for learning object-oriented software
development.

7 Acknowledgements

We wish to thank Joe Bergin, Nancy Mahosky, and
Roselyn Teukolsky for helpful comments on early versions
of this paper. In addition, we wish to thank all those who
have generously provided us with feedback about the actual
scripts that our exercises use; without this feedback, the
project would be nowhere nearly as successful as it is.

References

[1] Astrachan, O., Clarity, M., and Matsuoka, C., The
Marine Biology Case Study, 2000. College Board.
Also available WWW:
http://www.collegeboard.org/ap/computer-
seience/html/case stud¥.html

[2] Bellin, D. ROLE PLAYING. Online. Intemet.
[August 22, 2001] Available WWW: http://www-
lifia.info.unlp.edu.ar/ppp/lap5.htm

[3] Bergin, J., J. Eckstein, M.L. Mamas, and E.
Wallingford, Patterns for Gaining Different
Perspectives, in Proceedings of PLoP 2001, 2001.

[4] Bergin, J. CONSISTENT METAPHOR. Online.
Intemet. [August 22, 2001] Available WWW:
http://wol.pace.edu/~bergin/PedPat 1.3 .html#consistent
metaphor

[5] Brown, K. WHAT DID YOU EAT FOR
BREAKFAST?. Online. Internet. [August22, 2001]
Available WWW: http ://www-
lifta.info.unlp.edu.ar/ppp/lap 12.htm

[6] Cockbum, A., Object-Oriented Analysis and Design,
Part I, C/C+ Users Journal, Online. Intemet. [August
22, 2001] Available WW'W:
http ://www.cuj .corn/articles/1998/9805/9805b/9805b.h
t_.~.

[7] College Board, Advanced Placement Course
Description: Computer Science, 2001. Online.
Internet. [August 22, 2001] Available WWW:
http://cbweb2s.eollegeboard.org/ap/pdf/cd computers
cienee_02.pdf

[8] Dean, N. and M. Hinchey, Introducing Formal
Methods Through Role Playing, SIGCSE Bulletin, vol.
27, no. 1, 1995, pp. 302-306.

[9] Dorf, M.L., Backtracking the Rat Way, SIGCSE
Bulletin, vol. 24, no. 1, 1992, pp. 272-276.

[10]Eekstein, J. INCREMENTAL ROLE PLAYING.
Online. Internet. [August 22, 2001] Available
WWW: http ://www-lifia.info.unlp.edu.ar/ppp/pp7.htm

[ll]Fayad, M., D Schmidt, and R. Johnson. Empowering
Framework Users. In: Building Application
Frameworks: Object-Oriented Foundations of
Framework Design. John Wiley & Sons 1999. Chapter
22, p. 505.

[12] Jones, J. Participatory Teaching Methods in Computer
Science, SIGCSE Bulletin, vol. 19, no. 1, 1987, pp.
155-160.

[13] Levine, D. "Helping Students Through Multiplicities",
The Journal o f Computing in Small Colleges, Vol. 15,
No. 5, May 2000, pp. 285-291.

[14] The Pedagogical Patterns Project, Home Page. Online.
Internet. [August 22, 2001] Available WWW:
http://www.pedago gicalpatterns, or g.

[15]Plato, The Apology (38a), in Plato - The Collected
Dialogs, E. Hamilton and H. Cairns, ed., Pantheon
Books, 1963.

[16] Sebesta, Robert. Concepts of Programming
Languages, 4 th Edition, Addison Wesley, 1999,
Chapter 1, p. 23.

125

