
COMPSCI 323: Computational Microeconomics,

Practice Final Exam 2

Note: this is based on a takehome exam that I gave previously during the
pandemic, and some of the instructions – try out your code, etc. – and topics
of questions reflect that.

In this exam you are asked to provide several linear or (mixed) integer linear
programs. You should write these in the MathProg (.mod) language you have
been using in programming assignments. You are allowed and strongly encour-
aged to test out these programs on your own, making your own test cases. You
do not need to submit your test cases. If you do test your code, you can facil-
itate grading by including your output for the problem instance given in this
exam.

Please read instructions carefully. Be clear, precise, and concise in your
answers. Rambling or “shotgun” answers where someone tries to say a bunch
of different things, perhaps in the hope that something about it is right, will
receive no points. For most questions, either you get it right or you don’t, so
please be careful and try to get it right.

You are allowed to ask clarification questions. However, we cannot help you
with questions such as “I’m stuck” or “Can you tell me what is wrong with my
formulation?”

Good luck!! –Vince

Please write your name and NetID.
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Problem 1: True or False.

Label each of the following statements as true or false. You are not required
to give any explanation.

1. Weighted bipartite matching can be reduced to linear programming.

2. When preferences are single-peaked and the number of voters is odd, there
is always a Condorcet winner, and always choosing the Condorcet winner
as the winner of the election is strategy-proof.

3. Some people believe that the right answer to the Sleeping Beauty puzzle
is 1/2, and others believe that it is 1/3.

4. A 2× 2 game that has no weakly dominated strategies must have at least
2 Nash equilibria.

5. In a subgame perfect Nash equilibrium, there cannot be (what could rea-
sonably be considered) a threat that is not credible.

6. The revenue equivalence theorem implies that Myerson’s auction has the
same expected revenue as the second-price sealed-bid auction (when bid-
ders are risk neutral and valuations are drawn uniformly from [0, 1]).

7. With interdependent valuations, in a Vickrey auction, if you bid truthfully
(your current estimate of the item’s value to you), you will sometimes
regret it.

8. The revelation principle implies that there does not exist a non-truthful
auction that gives strictly more expected revenue than every truthful auc-
tion (assuming the solution concept is Bayes-Nash equilibrium in both
cases).

9. In the generalized Vickrey auction (for combinatorial auctions), it is pos-
sible that if you add additional bids, the revenue will become (strictly)
lower.

10. The Myerson-Satterthwaite impossibility result suggests that sometimes,
a deal that would benefit both parties will not happen, due to strategic
reasons.
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Problem 2: Finding a Pareto improvement in assigning items.
In this problem, we will consider agents that have additive valuations. That

just means that there are no substitutabilities or complementarities; the value
of a bundle to an agent is simply the sum of the values of the individual items
to the agent. We assume that there is no money; all the agents can do is
trade items (a bartering setting). Nevertheless, we want to come up with the
most efficient trade. That is, we want to rearrange all the items in such a way
that each agent is better off, and moreover, we want to maximize the minimum
improvement of any agent. That is, we evaluate the quality of a reallocation by
how much utility the agent that gained the least gained. We assume all agents’
utilities are common knowledge – so, they do not need to be reported.

For example, suppose agent 1 values item A at 2, item B at 2, and item C
at 2, and currently owns item A; agent 2 values item A at 4, item B at 1, and
item C at 0, and currently owns items B and C. Then, the optimal solution is
to give items B and C to 1 (so that her utility is increased by (2 + 2)− 2 = 2)
and item A to agent 2 (so that his utility is increased by 4− (1 + 0) = 3). The
quality of this solution is the minimum improvement, which is 2.

a. Give an example where in the optimal solution, an item ends up with an
agent who does not value it the most (i.e., another agent has higher valuation
for that item). You should do so by changing the above example, in particular
by changing only one number.

b. Give an integer program for the problem of computing the optimal
reallocation. Write it in the MathProg language, and include as the data
portion the above example (the original one, not your modified one). It should
start:

set AGENTS;

set ITEMS;

param value{i in AGENTS, j in ITEMS};

param currently_owns{i in AGENTS, j in ITEMS};

var obtains{i in AGENTS, j in ITEMS}, binary;

Here, currently owns[i,j] denotes that i owns j before the reallocation and
obtains[i,j] that i owns j after the reallocation.
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Problem 3: Choosing bus routes.
A city decides to drastically reduce its bus routes. It used to have routes

A,B,C,D,E, F,G, but it has decided to cut 3 of these routes, leaving only 4.
To determine which 4 routes to keep, several agents are asked how much they
value the routes. Agents generally want a bundle of bus routes, since sometimes
they can only get where they want to go by transferring from one bus to another.
Suppose the bids for bundles are the following (each bid belonging to a different
agent, representing how much that agent values that bundle).

1. ({A,B,C}, 5)

2. ({A,D,E,F},10)

3. ({A,C,G},3)

4. ({B,G}, 3)

5. ({E,F,G},6)

Note that, unlike in a combinatorial auction, in this case goods are nonrival: if
a bus route is chosen to be kept, all the agents who wanted that bus route will
be able to use it. The difficulty here comes from only being able to choose 4.
Note also that all the routes in an agent’s bundle need to be included in order
for the agent to get any positive value. The goal is to maximize the total value
generated by the chosen bus route (maximize social welfare).

a. Find the optimal solution for the above example.

b. Compute the VCG (Clarke mechanism) payments for the above exam-
ple.

c. Give an integer program for the problem of computing the optimal set
of bus routes. Write it in the MathProg language, and include as the data
portion the above example. (Your formulation does not need to calculate the
VCG payments.) It should start:

set ROUTES;

set BIDS;

param max_number_of_routes_allowed;

param contained_in{i in ROUTES, j in BIDS};

param value{j in BIDS};

var kept{i in ROUTES}, binary;

You may wish to introduce an additional type of variable.
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Problem 4: The distancing dilemma.
Two people are approaching each other on a narrow trail. They can’t come

close to each other. On both sides of the trail there is mud. If one person goes
and stands in the mud, they can pass each other. (If they both go into the
mud on their respective sides, they can also pass each other.) So, initially, both
players have a choice between Mud (M) and Trail (T). If you choose T and the
other M, you’ll get a utility of 2. If you choose M (in which case you’ll definitely
get to pass), you’ll get a utility of 1 – you’ll pass but have muddy shoes.

However, if both choose T, the situation hasn’t resolved yet – they’ll still be
stuck. Realizing that this has happened, they will get another chance where,
again, they can choose M or T. The payoffs will be the same as above, except if
they again both choose T, they’ll have to give up and turn around, for a utility
of 0. (Let’s say otherwise an officer will come and tell both of them to go home,
for causing trouble.) So there are 2 rounds of the game in this case, and never
more.

a. Draw the above game in extensive form. Hint: While this is (at most) a
2-round game in which in both rounds the players choose simultaneously, only
one person can move at a node in an extensive-form game. Thus, for each of
the rounds, you’ll have to sequentialize the moves by the players, but you can
make them effectively simultaneous within each round by not letting the other
person learn what the first person did in the same round (but after the first
round completes, they’ll know everything that happened up to that point). So
the tree will be four moves deep on the side where in the first round they both
choose T.

b. Give the normal form of this game. Note that it should be a 4× 4 game
because the strategy must specify an action at every information set (even if
that information set is not reachable given the other part of the strategy). There
should be a fair amount of repetition in the matrix.

c. Give a pure-strategy subgame-perfect Nash equilibrium in which player
1 obtains utility 2. The strategies should be ones from your game in b.

d. Solve for a symmetric subgame-perfect Nash equilibrium of this game
(which will involve randomization). (An equilibrium is symmetric if the row
and column player use the same strategy.) Hint: you can do this by a sort
of backward induction: first solve for an equilibrium of the second round (after
both choose T), and then replace this subgame by the values of that equilibrium,
and solve the first round.

5



Problem 5: An approval voting Bayesian game.
There are three alternatives (a, b, and c) and two voters (1 and 2). The voters

will use approval voting (approve or disapprove every alternative, alternative
with most approvals wins) to determine which alternative wins. If there is a tie,
then it is broken uniformly at random.

A voter’s type is given by a vector (ua, ub, uc) of utilities that that voter will
get for the alternatives. Voter 1 has two possible types: θ11 = (1, 0.8, 0) and
θ12 = (0, 0, 1). They occur with probability 0.8 and 0.2, respectively. Voter 2
has two possible types: θ21 = (0.8, 1, 0) and θ12 = (0, 0, 1). They occur with
probability 0.8 and 0.2, respectively. So, most of the time player 1 prefers a
(but with b close behind) and most of the time player 2 prefers b (but with a
close behind), but for each of them, with some probability, he/she only likes c.

Two helpful insights are the following. For an alternative that gives you
your maximum possible utility (in this case that is always 1), strategically, it
never hurts you to approve it. Similarly, for an alternative that gives you your
minimum possible utility (in this case that is always 0), strategically, it never
hurts you to not approve it. This rules out many possible strategies; the only
strategic question remaining is whether you should approve an alternative that
gives you utility somewhere strictly between 0 and 1.

Thus, the key question becomes: if you have the first (more common) type,
do you approve only your top choice, or also your second choice? Doing the
former risks that c gets a larger probability (1/2 instead of 1/3 if the other
player has the less common type), but doing the latter is more likely to give you
only your second choice if the other player has the more common type.

a. Give the normal form of this game (not including strategies that do not
make sense according to the above). The game should be a 2× 2 game. Please
work carefully; this is analogous to what we did in the slides, but a little trickier
because the distributions here are not 50-50. Please express the utilities in the
normal form as exact fractions, with 375 in the denominators. (You may want
to use, e.g., Wolfram Alpha which will return answers in exact fractions if you
input them as exact fractions. The numerators should be 273, 287, 291, and
305, not necessarily in that order.)

b. Solve for all Nash equilibria of the game and briefly explain why there
are no others. (Is there dominance?)

Now consider a different game. It is no longer a Bayesian game (equivalently,
you can think of it as each player having only one possible type), but a 3-player
game. Specifically, voter 1 now definitely has utilities (1, 0.8, 0) and voter 2
definitely has utilities (0.8, 1, 0) (above, those were their first types). But now
there is also a third voter with utilities (0, 0, 1).

c. Give the normal form of this game (not including strategies that do not
make sense according to the above). If a voter has only one strategy left, you
don’t need to add that voter as a player in the game (since it’s clear what this
voter will do anyway). By doing this, the game should be a 2× 2 game.
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d. Solve for all Nash equilibria of the game. (Is there dominance? Which
game does this remind you of?)
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