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A few different 1-item auction mechanisms
• English auction:

– Each bid must be higher than previous bid

– Last bidder wins, pays last bid

• Japanese auction:
– Price rises, bidders drop out when price is too high

– Last bidder wins at price of last dropout 

• Dutch auction:
– Price drops until someone takes the item at that price

• Sealed-bid auctions (direct-revelation mechanisms):
– Each bidder submits a bid in an envelope

– Auctioneer opens the envelopes, highest bid wins
• First-price sealed-bid auction: winner pays own bid

• Second-price sealed bid (or Vickrey) auction: winner pays second-
highest bid



Complementarity and substitutability

• How valuable one item is to a bidder may 
depend on whether the bidder possesses 
another item

• Items a and b are complementary if v({a, b}) > 
v({a}) + v({b})

• E.g.

• Items a and b are substitutes if v({a, b}) < 
v({a}) + v({b})

• E.g.



Inefficiency of sequential auctions 
• Suppose your valuation function is v(     ) = 

$200, v(     ) = $100, v(           ) = $500

• Now suppose that there are two (say, Vickrey) 
auctions, the first one for      and the second 
one for

• What should you bid in the first auction (for     )?

• If you bid $200, you may lose to a bidder who 
bids $250, only to find out that you could have 
won       for $200

• If you bid anything higher, you may pay more 
than $200, only to find out that       sells for 
$1000

• Sequential (and parallel) auctions are inefficient



Combinatorial auctions

v( ) = $500

v( ) = $700

v( ) = $300

Simultaneously for sale: ,        ,  

bid 1

bid 2

bid 3

used in truckload transportation, industrial procurement, radio spectrum allocation, … 



The winner determination problem 

(WDP)

• Choose a subset A (the accepted bids) of the 
bids B, 

• to maximize Σb in Avb, 

• under the constraint that every item occurs at 
most once in A

– This is assuming free disposal, i.e., not everything 
needs to be allocated



WDP example

• Items A, B, C, D, E

• Bids:

• ({A, C, D}, 7)

• ({B, E}, 7)

• ({C}, 3)

• ({A, B, C, E}, 9)

• ({D}, 4)

• ({A, B, C}, 5)

• ({B, D}, 5)

• What’s an 
optimal 
solution?

• How can we 
prove it is 
optimal?



Price-based argument for optimality

• Items A, B, C, D, E

• Bids:

• ({A, C, D}, 7)

• ({B, E}, 7)

• ({C}, 3)

• ({A, B, C, E}, 9)

• ({D}, 4)

• ({A, B, C}, 5)

• ({B, D}, 5)

• Suppose we create 
the following “prices” 
for the items:

• p(A) = 0, p(B) = 7, 
p(C) = 3, p(D) = 4, 
p(E) = 0

• Every bid bids at 
most the sum of the 
prices of its items, so 
we can’t expect to 
get more than 14.



Price-based argument does not 

always give matching upper bound

• Items A, B, C

• Bids:

• ({A, B}, 2)

• ({B, C}, 2)

• ({A, C}, 2)

• Clearly can get at most 2

• If we want to set prices that 
sum to 2, there must exist two 
items whose prices sum to < 2

• But then there is a bid on those 
two items of value 2

– (Can set prices that sum to 3, so 
that’s an upper bound)

Should not be surprising, since it’s an NP-
hard problem and we don’t expect short 
proofs for negative answers to NP-hard 
problems (we don’t expect NP = coNP)



An integer program formulation
• xb equals 1 if bid b is accepted, 0 if it is not

▪ maximize Σb vbxb

▪ subject to
▪ for each item j, Σb: j in b xb ≤ 1

• If each xb can take any value in [0, 1], we say that 
bids can be partially accepted

• In this case, this is a linear program that can be 
solved in polynomial time

• This requires that
– each item can be divided into fractions

– if a bidder gets a fraction f of each of the items in his bundle, 
then this is worth the same fraction f of his value vb for the 
bundle



Price-based argument does always 

work for partially acceptable bids
• Items A, B, C

• Bids:

• ({A, B}, 2)

• ({B, C}, 2)

• ({A, C}, 2)

• Now can get 3, by 
accepting half of 
each bid

• Put a price of 1 on 
each item

General proof that with partially 
acceptable bids, prices always 
exist to give a matching upper 
bound is based on linear 
programming duality



Weighted independent set

• Choose subset of the vertices with maximum total 
weight,

• Constraint: no two vertices can have an edge 
between them

• NP-hard (generalizes regular independent set)
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The winner determination problem as a 

weighted independent set problem
• Each bid is a vertex

• Draw an edge between two vertices if they share an item

v( ) = $500

bid 1

v( ) = $700

bid 2

v( ) = $300

bid 3

• Optimal allocation = maximum weight independent set

• Can model any weighted independent set instance as a CA 
winner determination problem (1 item per edge (or clique))

• Weighted independent set is NP-hard, even to solve 
approximately [Håstad 96] - hence, so is WDP
– [Sandholm 02] noted that this inapproximability applies to the WDP



Dynamic programming approach 

to WDP [Rothkopf et al. 98]

• For every subset S of I, compute w(S) = the 
maximum total value that can be obtained 
when allocating only items in S

• Then, w(S) = max {maxi vi(S), maxS’: S’ is a subset of 

S, and there exists a bid on S’ w(S’) + w(S \ S’)}

• Requires exponential time



Bids on connected sets of items in a tree
• Suppose items are organized in a tree

item A

item B

item C

item D

item E

item F

item G

item H

• Suppose each bid is on a connected set of items
– E.g. {A, B, C, G}, but not {A, B, G}

• Then the WDP can be solved in polynomial time (using 
dynamic programming) [Sandholm & Suri 03]

• Tree does not need to be given: can be constructed from the 
bids in polynomial time if it exists [Conitzer, Derryberry, Sandholm 04]

• More generally, WDP can also be solved in polynomial time for 
graphs of bounded treewidth [Conitzer, Derryberry, Sandholm 04]

– Even further generalization given by [Gottlob, Greco 07]



Maximum weighted matching
(not necessarily on bipartite graphs)

• Choose subset of the edges with maximum total 
weight,

• Constraint: no two edges can share a vertex

• Still solvable in polynomial time

1
2

3

4 3

2 4
5



Bids with few items [Rothkopf et al. 98]

• If each bid is on a bundle of at most two items, 

• then the winner determination problem can be solved 
in polynomial time as a maximum weighted matching
problem 
– 3-item example:

item A
item B

item CA’s dummy

B’s dummy

C’s dummy

Value of highest 

bid on {A}

Value of 

highest bid 

on {B}

Value of 

highest bid 

on {C}

Value of highest 

bid on {A, B}

Value of 

highest bid 

on {A, C}

Value of 

highest bid 

on {B, C}

• If each bid is on a bundle of three items, then the 
winner determination problem is NP-hard again



Variants [Sandholm et al. 2002]: 

combinatorial reverse auction

• In a combinatorial reverse auction (CRA), 
the auctioneer seeks to buy a set of 
items, and bidders have values for the 
different bundles that they may sell the 
auctioneer

▪ minimize Σb vbxb

▪ subject to

▪ for each item j, Σb: j in b xb ≥ 1



WDP example (as CRA)

• Items A, B, C, D, E

• Bids:

• ({A, C, D}, 7)

• ({B, E}, 7)

• ({C}, 3)

• ({A, B, C, E}, 9)

• ({D}, 4)

• ({A, B, C}, 5)

• ({B, D}, 5)



Variants: 

multi-unit CAs/CRAs
• Multi-unit variants of CAs and CRAs: multiple 

units of the same item are for sale/to be 
bought, bidders can bid for multiple units

• Let qbj be number of units of item j in bid b, qj 

total number of units of j available/demanded 

▪ maximize Σb vbxb

▪ subject to

▪ for each item j, Σb qbjxb ≤ qj

▪ minimize Σb vbxb

▪ subject to

▪ for each item j, Σb qbjxb ≥ qj



Multi-unit WDP example 

(as CA/CRA)
• Items: 3A, 2B, 4C, 1D, 3E

• Bids:

• ({1A, 1C, 1D}, 7)

• ({2B, 1E}, 7)

• ({2C}, 3)

• ({2A, 1B, 2C, 2E}, 9)

• ({2D}, 4)

• ({3A, 1B, 2C}, 5)

• ({2B, 2D}, 5)



Variants: (multi-unit) 

combinatorial exchanges

• Combinatorial exchange (CE): bidders can 
simultaneously be buyers and sellers

– Example bid: “If I receive 3 units of A and -5 units of 
B (i.e., I have to give up 5 units of B), that is worth 
$100 to me.”

▪ maximize Σb vbxb

▪ subject to

▪ for each item j, Σb qb,jxb ≤ 0



CE WDP example

• Bids:

• ({-1A, -1C, -1D}, -7)

• ({2B, 1E}, 7)

• ({2C}, 3)

• ({-2A, 1B, 2C, -2E}, 9)

• ({-2D}, -4)

• ({3A, -1B, -2C}, 5)

• ({-2B, 2D}, 0)



Variants: no free disposal

• Change all inequalities to equalities



(back to 1-unit CAs) Expressing valuation 

functions using bundle bids
• A bidder is single-minded if she only wants 

to win one particular bundle

– Usually not the case

• But: one bidder may submit multiple 
bundle bids

• Consider again valuation function v(     ) = 
$200, v(     ) = $100, v(           ) = $500

• What bundle bids should one place?

• What about: v(     ) = $300, v(     ) = $200, 
v(           ) = $400?



Alternative approach: 

report entire valuation function

• I.e., every bidder i reports vi(S) for every subset 
S of I (the items)

• Winner determination problem:

• Allocate a subset Si of I to each bidder i to 
maximize Σivi(Si) (under the constraint that for 
i≠j, Si ∩ Sj = Ø)

– This is assuming free disposal, i.e., not everything 
needs to be allocated



Exponentially many bundles
• In general, in a combinatorial auction with set of 

items I (|I| = m) for sale, a bidder could have a 
different valuation for every subset S of I

– Implicit assumption: no externalities (bidder does 
not care what the other bidders win)

• Must a bidder communicate 2m values?

– Impractical

– Also difficult for the bidder to evaluate every bundle

• Could require vi(Ø) = 0

– Does not help much

• Could require: if S is a superset of S’, v(S) ≥ 
v(S’) (free disposal)

– Does not help in terms of number of values



Bidding languages
• Bidding language = a language for expressing valuation 

functions

• A good bidding language allows bidders to concisely express 
natural valuation functions

• Example: the OR bidding language [Rothkopf et al. 98, 
DeMartini et al. 99]

• Bundle-value pairs are ORed together, auctioneer may accept 
any number of these pairs (assuming no overlap in items)

• E.g. ({a}, 3) OR ({b, c}, 4) OR ({c, d}, 4) implies

– A value of 3 for {a}

– A value of 4 for {b, c, d}

– A value of 7 for {a, b, c}

• Can we express the valuation function v({a, b}) = v({a}) = v({b}) 
= 1 using the OR bidding language?

• OR language is good for expressing complementarity, bad for 
expressing substitutability



XORs
• If we use XOR instead of OR, that means that only one of the 

bundle-value pairs can be accepted

• Can express any valuation function (simply XOR together all 
bundles)

• E.g. ({a}, 3) XOR ({b, c}, 4) XOR ({c, d}, 4) implies
– A value of 3 for {a}

– A value of 4 for {b, c, d}

– A value of 4 for {a, b, c}

• Sometimes not very concise

• E.g. suppose that for any S, v(S) = Σs in Sv({s})
– How can this be expressed in the OR language?

– What about the XOR language?

• Can also combine ORs and XORs to get benefits of both [Nisan 
00, Sandholm 02]

• E.g. (({a}, 3) XOR ({b, c}, 4)) OR ({c, d}, 4) implies
– A value of 4 for {a, b, c}

– A value of 4 for {b, c, d}

– A value of 7 for {a, c, d}



WDP and bidding languages
• Single-minded bidders bid on only one bundle

– Valuation is v for any subset including that bundle, 0 
otherwise

• If we can solve the WDP for single-minded bidders, 
we can also solve it for the OR language
– Simply pretend that each bundle-value pair comes from a 

different bidder

• We can even use the same algorithm when XORs are 
added, using the following trick:
– For bundle-value pairs that are XORed together, add a 

dummy item to them [Fujishima et al 99, Nisan 00]

– E.g. ({a}, 3) XOR ({b, c}, 4) becomes ({a, dummy1}, 3) OR 
({b, c, dummy1}, 4)

• So, we can focus on single-minded bids


