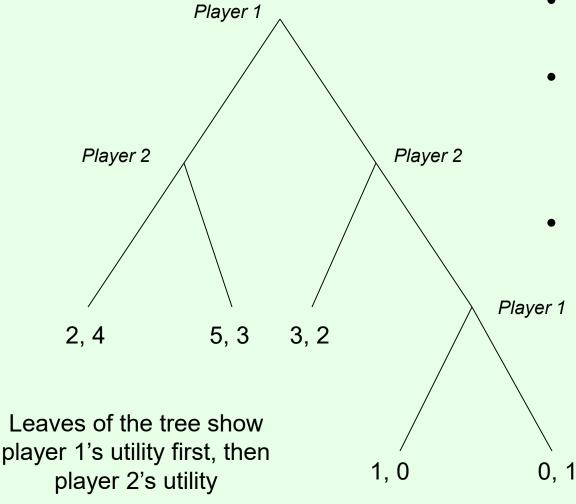
Extensive-form games

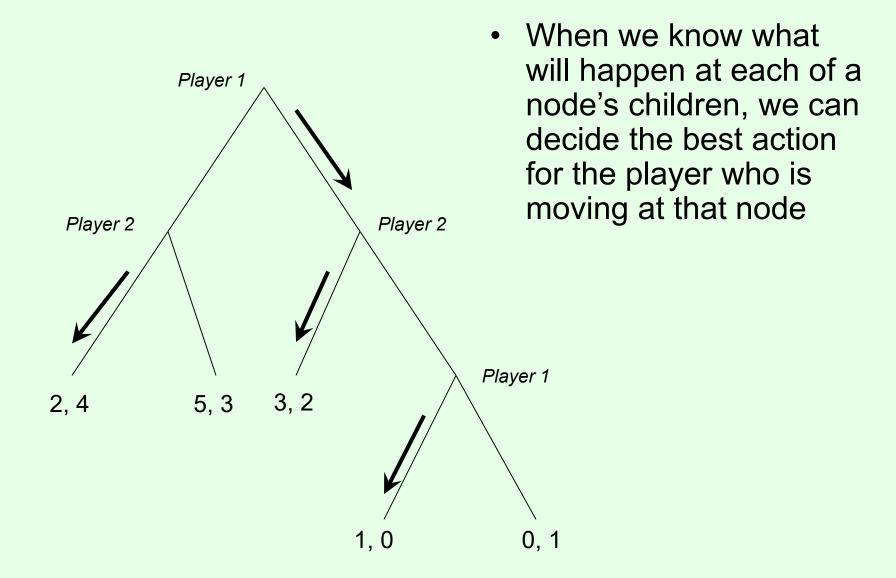
Vincent Conitzer conitzer@cs.duke.edu

Extensive-form games with perfect information

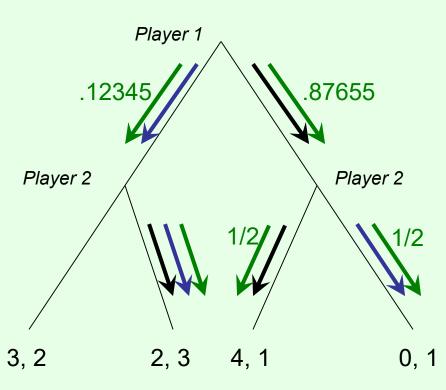


- Players do not move simultaneously
- When moving, each player is aware of all the previous moves (perfect information)
- A (pure) strategy for player i is a mapping from player i's nodes to actions

Backward induction



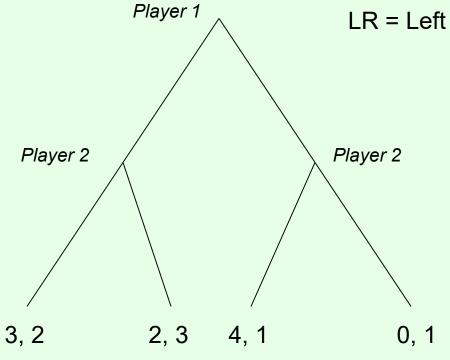
A limitation of backward induction



- If there are ties, then how they are broken affects what happens higher up in the tree
- Multiple equilibria...

Conversion from extensive to normal form

R

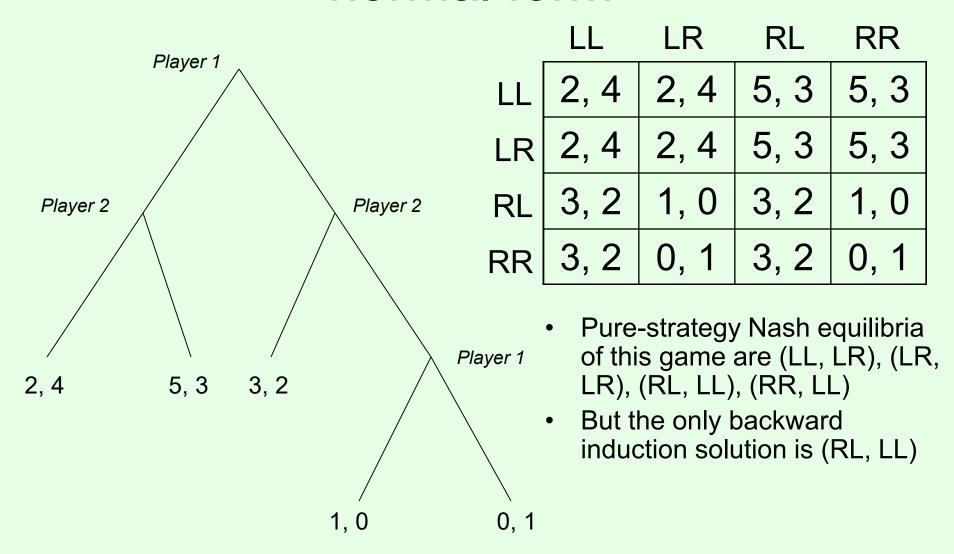


LR = Left if 1 moves Left, Right if 1 moves Right; etc.

LL	LR	RL	RR
3, 2	3, 2	2, 3	2, 3
4, 1	0, 1	4, 1	0, 1

- Nash equilibria of this normal-form game include (R, LL), (R, RL), (L, RR) + infinitely many mixed-strategy equilibria
- In general, normal form can have exponentially many strategies

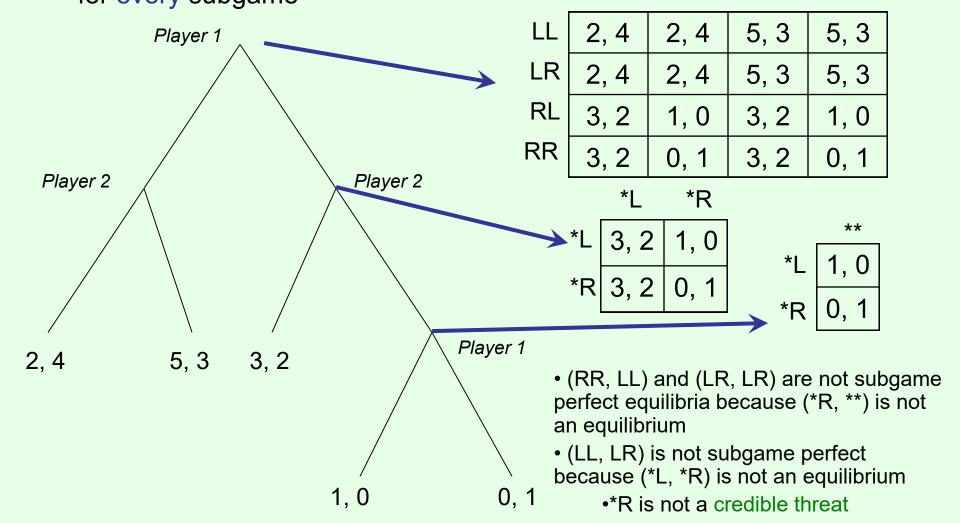
Converting the first game to normal form



Subgame perfect equilibrium

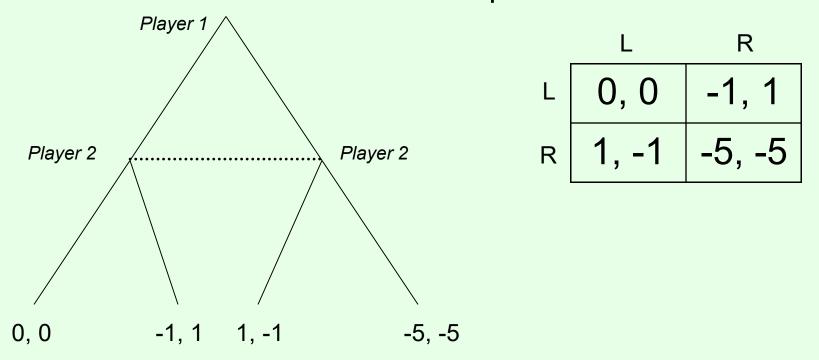
 Each node in a (perfect-information) game tree, together with the remainder of the game after that node is reached, is called a subgame

A strategy profile is a subgame perfect equilibrium if it is an equilibrium for every subgame



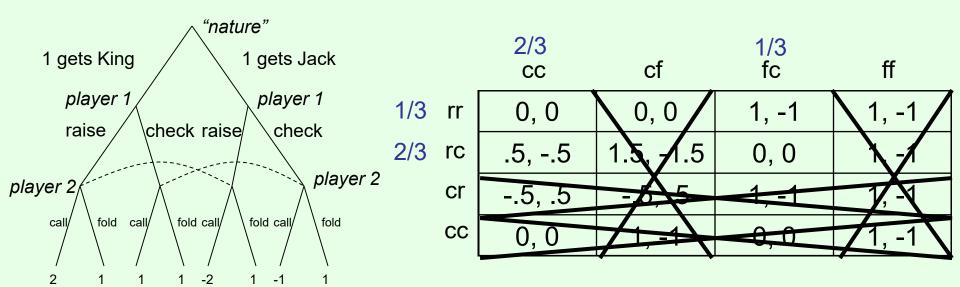
Imperfect information

- Dotted lines indicate that a player cannot distinguish between two (or more) states
 - A set of states that are connected by dotted lines is called an information set
- Reflected in the normal-form representation



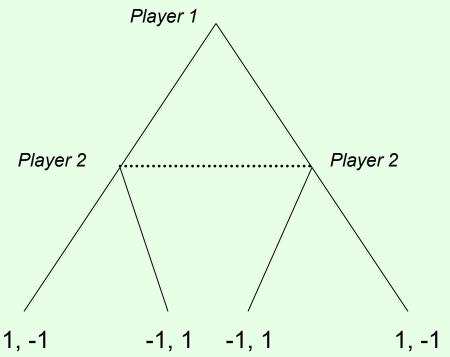
 Any normal-form game can be transformed into an imperfect-information extensive-form game this way

A poker-like game



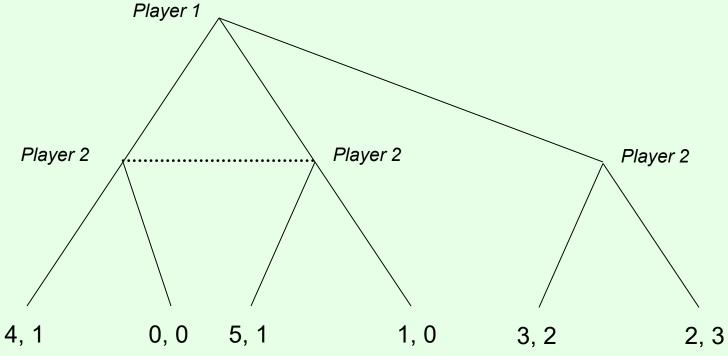
Subgame perfection and imperfect information

 How should we extend the notion of subgame perfection to games of imperfect information?



- We cannot expect Player 2 to play Right after Player 1 plays Left, and Left after Player 1 plays Right, because of the information set
- Let us say that a subtree is a subgame only if there are no information sets that connect the subtree to parts outside the subtree

Subgame perfection and imperfect information...



- One of the Nash equilibria is: (R, RR)
- Also subgame perfect (the only subgames are the whole game, and the subgame after Player 1 moves Right)
- But it is not reasonable to believe that Player 2 will move Right after Player
 1 moves Left/Middle (not a credible threat)
- There exist more sophisticated refinements of Nash equilibrium that rule out such behavior

Computing equilibria in the extensive form

- Can just use normal-form representation
 - Misses issues of subgame perfection, etc.
- Another problem: there are exponentially many pure strategies, so normal form is exponentially larger
 - Even given polynomial-time algorithms for normal form, time would still be exponential in the size of the extensive form
- There are other techniques that reason directly over the extensive form and scale much better
 - E.g., using the sequence form of the game

Commitment

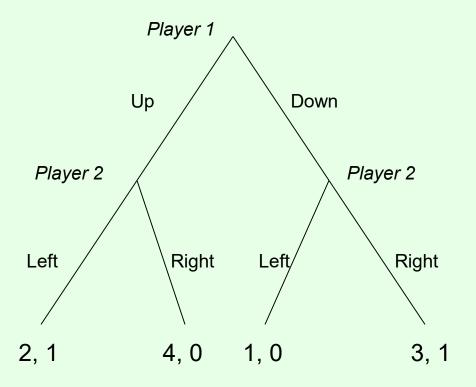
Consider the following (normal-form) game:

2,	1	4,	0
1,	0	3,	1

- How should this game be played?
- Now suppose the game is played as follows:
 - Player 1 commits to playing one of the rows,
 - Player 2 observes the commitment and then chooses a column
- What is the optimal strategy for player 1?
- What if 1 can commit to a mixed strategy?

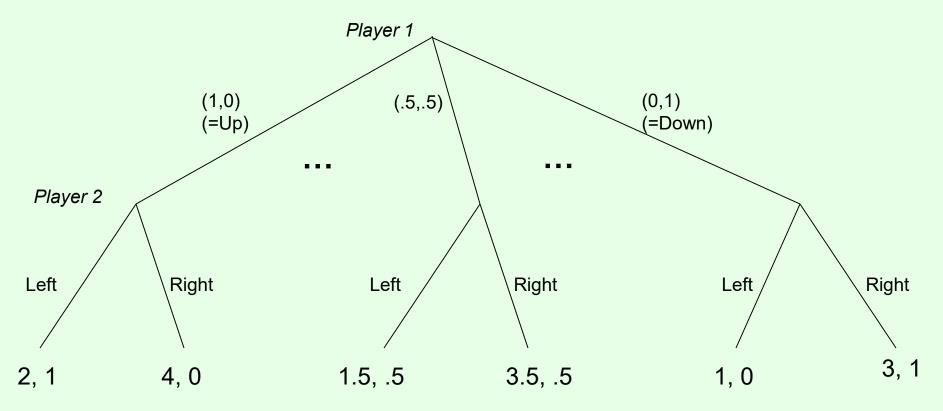
Commitment as an extensive-form game

For the case of committing to a pure strategy:



Commitment as an extensive-form game

For the case of committing to a mixed strategy:



 Infinite-size game; computationally impractical to reason with the extensive form here

Solving for the optimal mixed strategy to commit to

[Conitzer & Sandholm 2006, von Stengel & Zamir 2010]

- For every column t separately, we will solve separately for the best mixed row strategy (defined by p_s) that induces player 2 to play t
- maximize $\Sigma_s \mathbf{p_s} \mathbf{u_1}(s, t)$
- subject to

```
for any t', \Sigma_s \mathbf{p_s} \mathbf{u_2}(s, t) \ge \Sigma_s \mathbf{p_s} \mathbf{u_2}(s, t')
\Sigma_s \mathbf{p_s} = 1
```

- (May be infeasible, e.g., if t is strictly dominated)
- Pick the t that is best for player 1

Visualization

	L	С	R				
U	0,1	1,0	0,0	(0,1,0) = M			
M	4,0	0,1	0,0				
D	0,0	1,0	1,1				
			(1.0.0) = 1	(0.0.1) = I			