COMPSCI 323 / ECON 336 / COMPSCI 590.8
Computational Microeconomics
Instructor: Vincent Conitzer
conitzer@cs.duke.edu

https://courses.cs.duke.edu/spring22/compsci323d/
TAs: Chad Kalil, Alex Whitefield; Albert Sun, David (Ruoyu) Wu, Joe (Yuncong) Zuo
CS-ECON@DUKE
Exploring the Intersection of Computer Science and Economics

Who Are We?

We are a group of Duke University faculty, postdocs, and students interested in the intersection of computer science and economics (and the social sciences more broadly) and the impact of this interplay on decisions in information technology and digital business. This includes applying techniques from computer science and optimization to economics -- for example, using computation to design market clearing mechanisms and to implement efficient allocation and pricing in them -- as well as applying techniques from economics to computer science -- for example, designing incentives for users of networked computer systems and social networks.

Contacts

For organizational questions about the seminar series:
- Yuan Deng
- Catherine Moon

For other matters, contact the relevant faculty member(s):
- Atila Abdulkadiroglu (Econ)
- Viswanath U. Srinivasan (CS)
M.S. Economics & Computation

The joint field of economics and computer science has emerged from two converging intellectual needs: Computer science has become increasingly important for economists working with big data to address complex questions. Students interested in learning about computational mechanism design with applications to economics are ideal candidates for this program. Students whose interest is more generally focused on data analytics across a broad range of fields may also be interested in Duke’s Master of Quantitative Management (MQM) program, offered at the Fuqua School of Business, and/or Duke’s new Master in Interdisciplinary Data Science (MIDS) program, which is accepting its first class in Fall 2018.

The MSEC program combines the strengths of the Departments of Economics and Computer Science to educate students in these important computational skills linked to economics, and to prepare them for Ph.D. studies or careers in economics, finance, government, and business. Reflecting this strong interdisciplinary relationship, Duke University ranks No. 4 for research in economics and computation, according to CSRankings.org.

This program is designed to meet the needs of students with varied levels of exposure to either field, but a strong quantitative background is recommended.

M.A. Program Assistant
Addie Stagg
History

John von Neumann

- computer architecture (von Neumann architecture)
- game theory (minimax theorem)
- linear programming (duality)

Computer Science & Engineering
Economic Theory
Mathematical Optimization & Operations Research

1900 1950 2000
What is Economics?

- “a social science that studies the production, distribution, and consumption of goods and services.” [Wikipedia, Jan. 2022]

- Some key concepts:
  - Economic agents or players (individuals, households, firms, bots, …)
  - Agents’ current endowments of goods, money, skills, …
  - Possible outcomes ((re)allocations of resources, tasks, …)
  - Agents’ preferences or utility functions over outcomes
  - Agents’ beliefs (over other agents’ utility functions, endowments, production possibilities, …)
  - Agents’ possible decisions/actions
  - Mechanism that maps decisions/actions to outcomes
An economic picture

\[ v(\text{computer}) = 200 \]

\[ v(\text{desktop}) = 100 \]

\[ v(\text{laptop}) = 400 \]

\[ v(\text{server}) = 400 \]

$800$

$600$

$200$
After trade (a more efficient outcome)

\[ v(\bullet) = 200 \]

\[ v(\bullet) = 100 \]

\[ v(\bullet) = 400 \]

\[ v(\bullet) = 200 \]

\[ v(\bullet) = 400 \]

\[ \$ 1100 \]

\[ \$ 100 \]

\[ \$ 400 \]

\[ \$ 400 \]

\[ \$ 100 \]

... but how do we get here?
Unstructured trade?
Auctions?
Exchanges?
Some distinctions in economics

- **Descriptive vs. normative economics**
  - Descriptive:
    - seeks only to describe real-world economic phenomena
    - does not care if this is in any sense the “right” outcome
  - Normative:
    - studies how people “should” behave, what the “right” or “best” outcome is

- **Microeconomics vs. macroeconomics**
  - Microeconomics: analyzes decisions at the level of individual agents
    - deciding which goods to produce/consume, setting prices, …
    - “bottom-up” approach
  - Macroeconomics: analyzes “the sum” of economic activity
    - interest rates, inflation, growth, unemployment, government spending, taxation, …
    - “big picture”
What is Computer Science?

• “Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines, such as algorithms, theory of computation, and information theory, to practical disciplines including the design and implementation of hardware and software. Computer science is generally considered an area of academic research and distinct from computer programming.” [Wikipedia, Jan. 2022]

• A **computational problem** is given by a function $f$ mapping inputs to outputs
  - For integer $x$, let $f(x) = 0$ if $x$ is prime, 1 otherwise
  - For initial allocation of resources + agent utilities $x$, let $f(x)$ be the (re)allocation that maximizes the sum of utilities

• An **algorithm** is a fully specified procedure for computing $f$
  - E.g., sieve of Eratosthenes
  - A **correct algorithm** always returns the right answer
  - An **efficient algorithm** returns the answer fast

• Computer science is also concerned with building **larger artifacts** out of these building blocks (e.g., personal computers, spreadsheets, the Internet, the Web, search engines, artificial intelligence, …)
Resource allocation as a computational problem (Part 1 of the course)

**input**

\[ v(\text{comp}) = 400 \]
\[ v(\text{disk}) = 600 \]

\[ \text{man} = 800 \]
\[ \text{woman} = 400 \]

**output**

\[ \text{man} = 750 \]
\[ \text{woman} = 450 \]

Here, gains from trade ($300) are divided evenly (not essential)
Economic mechanisms

**“true” input**

<table>
<thead>
<tr>
<th>Agent</th>
<th>Item 1 Value</th>
<th>Item 2 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$400</td>
<td>$600</td>
</tr>
<tr>
<td>2</td>
<td>$500</td>
<td>$400</td>
</tr>
</tbody>
</table>

**agents’ bids**

<table>
<thead>
<tr>
<th>Agent</th>
<th>Item 1 Value</th>
<th>Item 2 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$500</td>
<td>$501</td>
</tr>
<tr>
<td>2</td>
<td>$451</td>
<td>$450</td>
</tr>
</tbody>
</table>

**result**

<table>
<thead>
<tr>
<th>Agent</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Exchange Mechanism (Algorithm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$800</td>
<td>$400</td>
<td>$800</td>
</tr>
<tr>
<td>2</td>
<td>$400</td>
<td>$400</td>
<td>$400</td>
</tr>
</tbody>
</table>

Exchange mechanism designer does not have direct access to agents’ private information

Agents will selfishly respond to incentives
Game theory

(Part 2 of the course)

- Game theory studies settings where agents each have
  - different preferences (utility functions),
  - different actions that they can take
- Each agent’s utility (potentially) depends on all agents’ actions
  - What is optimal for one agent depends on what other agents do
    - Very circular!
- Game theory studies how agents can rationally form beliefs over what other agents will do, and (hence) how agents should act
  - Useful for acting as well as predicting behavior of others
Penalty kick example

Is this a "rational" outcome? If not, what is?
Mechanism design

(Part 3 of the course)

- **Mechanism** = rules of auction, exchange, ...
- A function that takes reported preferences (bids) as input, and produces outcome (allocation, payments to be made) as output

\[
f(v(\text{item 1})) = \text{price} \quad v(\text{item 2}) = \text{price} \quad v(\text{item 3}) = \text{price}
\]

- The entire function \( f \) is one mechanism
- E.g., the mechanism from part 1: find allocation that maximizes (reported) utilities, distribute (reported) gains evenly
- Other mechanisms choose different allocations, payments
Example: (single-item) auctions

- Sealed-bid auction: every bidder submits bid in a sealed envelope
- First-price sealed-bid auction: highest bid wins, pays amount of own bid
- Second-price sealed-bid auction: highest bid wins, pays amount of second-highest bid

```
bid 1: $10
bid 2: $5
bid 3: $1

first-price: bid 1 wins, pays $10
second-price: bid 1 wins, pays $5
```
Which auction generates more revenue?

- Each bid depends on
  - bidder’s true valuation for the item (utility = valuation - payment),
  - bidder’s beliefs over what others will bid (→ game theory),
  - and... the auction mechanism used

- In a first-price auction, it does not make sense to bid your true valuation
  - Even if you win, your utility will be 0…

- In a second-price auction, (we will see later that) it always makes sense to bid your true valuation

<table>
<thead>
<tr>
<th>Bid 1</th>
<th>Bid 2</th>
<th>Bid 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10</td>
<td>$5</td>
<td>$1</td>
</tr>
<tr>
<td>$5</td>
<td>$4</td>
<td>$1</td>
</tr>
<tr>
<td>$10</td>
<td>$5</td>
<td>$1</td>
</tr>
<tr>
<td>$5</td>
<td>$4</td>
<td>$1</td>
</tr>
</tbody>
</table>

a likely outcome for the first-price mechanism
a likely outcome for the second-price mechanism

Are there other auctions that perform better? How do we know when we have found the best one?
Mechanism design...

• Mechanism = game
• → we can use game theory to predict what will happen under a mechanism
  – if agents act strategically

• When is a mechanism “good”?
  – Should it result in outcomes that are good for the reported preferences, or for the true preferences?
  – Should agents ever end up lying about their preferences (in the game-theoretic solution)?
  – Should it always generate the best allocation?
  – Should agents ever burn money?(!?)

• Can we solve for the optimal mechanism?
How are we going to solve these problems? *(Part 0)*

- This is **not** a programming course

- Will use optimization software
  - GNU Linear Programming Kit (GLPK)
  - Linear programming, mixed integer linear programming
## Uses of LP, MIP in this course

<table>
<thead>
<tr>
<th>Part 1 (expressive marketplaces)</th>
<th>Linear programming</th>
<th>Mixed integer linear programming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Winner determination in auctions, exchanges, … with partially acceptable bids</td>
<td>Winner determination in auctions, exchanges, … without partially acceptable bids</td>
</tr>
</tbody>
</table>
| Part 2 (game theory)            | Dominated strategies  
                                       Minimax strategies  
                                       Correlated equilibrium  
                                       Optimal mixed strategies to commit to | Nash equilibrium |
| Part 3 (mechanism design)       | Automatically designing optimal mechanisms that use randomization | Automatically designing optimal mechanisms that do not use randomization |
Other settings/applications
Combinatorial auctions (in Part 1)

Simultaneously for sale: 

- 
  - bid 1
  - \( v(\text{server, monitor}) = $500 \)

- bid 2
  - \( v(\text{server, laptop, monitor}) = $700 \)

- bid 3
  - \( v(\text{laptop}) = $300 \)

Used in truckload transportation, industrial procurement, radio spectrum allocation, …
Voting (in Part 1)

- Can vote over other things too
  - Where to go for dinner tonight, other joint plans, …
- Many different rules exist for selecting the winner

voting rule (mechanism) determines winner based on votes
Kidney exchange (in Part 1)

- Kidney exchanges allow patients with willing but incompatible live donors to swap donors
Kidney exchange (in Part 1)

Prescription AI
This series explores the promise of AI to personalize, democratize, and advance medicine—and the dangers of letting machines make decisions.

THE BOTPERATING TABLE

How AI changed organ donation in the US

By Corinne Purtill • September 10, 2018
Kidney exchange (in Part 1)

patient 1  donor 1  (patient 1’s friend)
  /compatibilities/

patient 2  donor 2  (patient 2’s friend)

patient 3  donor 3  (patient 3’s friend)

patient 4  donor 4  (patient 4’s friend)
perfect information games: no uncertainty about the state of the game (e.g. tic-tac-toe, chess, Go)

imperfect information games: uncertainty about the state of the game (e.g., poker)

1 gets King
1 gets Jack
raise
check
raise
check
call
fold
call
fold
call
fold
call
fold

"nature"

• Optimal play: value of each node = value of optimal child for current player (backward induction, minimax)
• For chess and Go, tree is too large
  – Use other techniques (heuristics, limited-depth search, alpha-beta, deep learning, …)
• Top computer programs better than humans in chess, not yet in Go
  – Players 1 and 2 cannot distinguish nodes connected by dotted lines
    – Backward induction fails; need more sophisticated game-theoretic techniques for optimal play
• Small poker variants can be solved optimally
• Humans still better than top computer programs at full-scale poker (at least most versions)
• Top computer (heads-up) poker players are based on techniques for game theory
Artificial intelligence masters multiplayer poker

This year, an artificial intelligence (AI) program beat some of the world’s best players in the most popular version of poker, no-limit Texas Hold’em. The landmark result marks the first time AI has prevailed in a multiplayer contest in which players have only imperfect information about the state of the game.

AI has been trouncing humans in games at a spectacular rate. In 2007, computer scientists developed a program guaranteed not to lose at checkers. In 2016, another team developed an AI program that defeated the best humans at Go, a board game with vastly more configurations than checkers.

Poker presents a stiffer challenge, as players cannot see their opponents’ cards and thus have limited information. In 2017, computer scientists developed an AI program unbeatable at a two-player version of Hold’em—in which each player forms a hand from five cards laid face up on the table and two more each holds privately.

Now, AI has bested world-class players in the full multiplayer game, as computer scientists at Carnegie Mellon University in Pittsburgh, Pennsylvania, announced in August. By playing 1 trillion games against itself, their program, **Pluribus**, developed a basic strategy for various kinds of situations—say, playing for an inside straight. For each specific hand, it could also think through how the cards would likely play out. In 20,000 hands with six players it outperformed 15 top-level players, as measured by average winnings per hand.
Real-world security applications (in Part 2)

Airport security
Where should checkpoints, canine units, etc. be deployed?

Federal Air Marshals
Which flights get a FAM?

US Coast Guard
Which patrol routes should be followed?

Wildlife Protection
Where to patrol to catch poachers or find their snares?

Milind Tambe’s TEAMCORE group
(USC → Harvard)
Who will win the 2024 US presidential election?

<table>
<thead>
<tr>
<th>Contract</th>
<th>Latest Yes Price</th>
<th>Best Offer</th>
<th>Best Offer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donald Trump</td>
<td>30¢</td>
<td>31¢</td>
<td>70¢</td>
</tr>
<tr>
<td>Joe Biden</td>
<td>22¢</td>
<td>23¢</td>
<td>78¢</td>
</tr>
<tr>
<td>Ron DeSantis</td>
<td>20¢</td>
<td>20¢</td>
<td>81¢</td>
</tr>
<tr>
<td>Kamala Harris</td>
<td>11¢</td>
<td>12¢</td>
<td>89¢</td>
</tr>
<tr>
<td>Pete Buttigieg</td>
<td>6¢</td>
<td>7¢</td>
<td>94¢</td>
</tr>
</tbody>
</table>
1. Research and Educational Facility

PredictIt is intended and offered as an experimental research and educational facility of Victoria University of Wellington, New Zealand ("Provider" or "We"), not as an investment market or a gambling facility. PredictIt is not regulated by, nor are its operators registered with, the U.S. Commodity Futures Trading Commission (CFTC) or any other regulatory authority.

Provider has received a no-action-letter from the Division of Market Oversight of the Commodity Futures Trading Commission. Without explicitly asserting jurisdiction over Provider or any of its submarkets, this letter, dated October 29, 2014, extended no-action relief to Provider's Political and Economic Indicator Markets (the latter limited to students, faculty and staff of participating universities). The letters are available at the CFTC website as part of their Freedom of Information Act documents. Pursuant to this letter, there is "a limit of 5000 total traders in any particular contract", and "a limit on investment by any single participant in any particular contract [of] $850".

i. PredictIt is offered by Victoria University, a highly-regarded, non-profit educational institution.

ii. No political party or other organization referred to on the Website in connection with any Market has (or has had) any role in the promotion or operation of this Website or any Market.

iii. Nothing on this Website constitutes an offer or invitation to trade with any person who is under 18 years of age.

2. Terms of Use

i. These Terms of Use set out the basis on which PredictIt offers you access to, and use of, the "PredictIt" website and trading facility whose homepage is located at www.PredictIt.org (the "Website"). By accessing or connecting to the Website, you agree to abide by these Terms of Use.

ii. We can change these Terms of Use at any time and in any way we consider appropriate. Our changes will take effect as soon as we publish an updated version of these Terms of Use on the Website. It is up to you to ensure that you are familiar with the latest version of these Terms of Use.
Financial securities (in Part 1)

- Tomorrow there must be one of ☀️ 🌧️ ⚡️
- Agent 1 offers $5 for a security that pays off $10 if 🌧️ or ☁️
- Agent 2 offers $8 for a security that pays off $10 if ☀️ or ⚡️
- Agent 3 offers $6 for a security that pays off $10 if ☀️
- Can we accept some of these at offers at no risk?
How to incentivize a weather forecaster (in Part 3)

- Forecaster’s bonus can depend on
  - Prediction
  - Actual weather on predicted day
- Reporting true beliefs should maximize expected bonus

\[
\begin{array}{c}
P(\text{\(\square\text{\(\bigodot\)\)}} = 0.5 \\
P(\text{\(\square\text{\(\bigodot\)\)}} = 0.3 \\
P(\text{\(\square\text{\(\bigodot\)\)}} = 0.2 \\
P(\text{\(\square\text{\(\bigodot\)\)}} = 0.8 \\
P(\text{\(\square\text{\(\bigodot\)\)}} = 0.1 \\
P(\text{\(\square\text{\(\bigodot\)\)}} = 0.1 \\
\end{array}
\]
Sponsored search / ad auctions (in Part 3)

- Choice of ads (if any) to show determined by:
  - Advertiser bid
  - Predicted likelihood of click