Section: Transforming grammars
(Ch. 6)

Methods for Transforming Grammars

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0,

$$S_0 \rightarrow S \mid \lambda$$
Theorem (Substitution) Let G be a CFG. Suppose G contains

$$A \to x_1Bx_2$$

where A and B are different variables, and B has the productions

$$B \to y_1 | y_2 | \ldots | y_n$$

Then can construct G’ from G by deleting

$$A \to x_1Bx_2$$

from P and adding to it

$$A \to x_1y_1x_2 | x_1y_2x_2 | \ldots | x_1y_nx_2$$

Then, $L(G) = L(G')$.
Example:

\[S \rightarrow aBa \]
\[B \rightarrow aS | a \]

becomes

\[S \rightarrow aaSa | aaa \]
\[B \rightarrow aS | a \]

now useless

Definition: A production of the form
\[A \rightarrow Ax, \: A \in V, \: x \in (V \cup T)^* \] is left recursive.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T \ast F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

Derivation of \(a + b + a + a\) is:

\[
\begin{align*}
E & \Rightarrow E + T \Rightarrow E + T + T \Rightarrow E + T + T + T \\
& \Rightarrow^* a + T + T + T
\end{align*}
\]
Theorem (Removing Left recursion)
Let $G = (V, T, S, P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

\[
A \rightarrow A x_1 \mid A x_2 \mid \ldots \mid A x_n \\
A \rightarrow y_1 | y_2 | \ldots | y_m
\]

where x_i, y_i are in $(V \cup T)^*$.

Then $G' = (V \cup \{Z\}, T, S, P')$ and P' replaces rules of form above by

\[
A \rightarrow y_i y_i Z, \ i=1,2,\ldots,m \\
Z \rightarrow x_i x_i Z, \ i=1,2,\ldots,n
\]
Example:

\[E \rightarrow E + T | T \] becomes \[E \rightarrow T | T + Z \]

\[T \rightarrow T * F | F \] becomes \[T \rightarrow F | F * Y \]

Now, Derivation of \(a + b + a + a \) is:

\[E \rightarrow T Z \rightarrow F Z \rightarrow I Z \rightarrow a Z \rightarrow \ldots \]
Useless productions

$$S \rightarrow aB \mid bA$$
$$A \rightarrow aA$$
$$B \rightarrow Sa$$
$$C \rightarrow cBc \mid a$$

What can you say about this grammar?

All variables useless

Theorem (useless productions) Let G be a CFG. Then \exists G’ that does not contain any useless variables or productions s.t. $L(G) = L(G')$.
To Remove Useless Productions:
Let \(G = (V, T, S, P) \).

I. Compute \(V_1 = \{ \text{Variables that can derive strings of terminals} \} \)

1. \(V_1 = \emptyset \)

2. Repeat until no more variables added
 - For every \(A \in V \) with \(A \rightarrow x_1 x_2 \ldots x_n \), \(x_i \in (T^* \cup V_1) \), add \(A \) to \(V_1 \)

3. \(P_1 = \) all productions in \(P \) with symbols in \((V_1 \cup T)^* \)

Then \(G_1 = (V_1, T, S, P_1) \) has no variables that can’t derive strings.
II. Draw Variable Dependency Graph

For $A \rightarrow xBy$, draw $A \rightarrow B$.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $L(G) = L(G')$ and G' has no useless productions.
Example:

\[S \rightarrow aB \mid bA \]

\[A \rightarrow aA \]

\[B \rightarrow Sa \mid b \]

\[C \rightarrow cBc \mid a \]

\[D \rightarrow bCb \]

\[E \rightarrow Aa \mid \ ` b \]

\[V_1 = \{B, C, E, S, D\} \]

\[P_1 = \begin{align*}
S &\rightarrow aB \\
B &\rightarrow Sa \mid b \\
C &\rightarrow cBc \mid a \\
D &\rightarrow bCb \\
E &\rightarrow b
\end{align*} \]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \(\exists \) a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{ A \mid \exists \text{ production } A \rightarrow \lambda \}$
2. Repeat until no more additions
 - if $B \rightarrow A_1 A_2 \ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n
3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1 x_2 \ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.
Example:

\[S \rightarrow Ab \]
\[A \rightarrow BCB \mid Aa \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow cC \mid \lambda \]

\[V_h = \{ B, C, A \} \]

\[G' = \begin{align*}
S & \rightarrow Ab \mid b \\
A & \rightarrow BCB \mid BC \mid BB \mid CB \mid BC \mid Aa \mid a \\
B & \rightarrow b \\
C & \rightarrow cC \mid c
\end{align*} \]
Definition Unit Production

$$A \rightarrow B$$

where $$A, B \in V$$.

Consider removing unit productions:

Suppose we have

- $$A \rightarrow B$$ becomes $$A \Rightarrow \varepsilon | ab$$
- $$B \rightarrow a \mid ab$$

But what if we have

- $$A \rightarrow B$$ becomes $$A \Rightarrow C$$
- $$B \rightarrow A$$
- $$C \rightarrow B$$
Theorem (Remove unit productions)
Let \(G=(V,T,S,P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G'=(V',T',S,P') \) that does not have any unit-productions and \(L(G)=L(G') \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow B \)
 (Draw a dependency graph)

2. Construct \(G'=(V',T',S,P') \) by
 (a) Put all non-unit productions in \(P' \)
 (b) For all \(A \Rightarrow B \) s.t. \(B \rightarrow y_1|y_2|\ldots y_n \in P' \), put \(A \rightarrow y_1|y_2|\ldots y_n \in P' \)
Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A

G:
S → AB
A → Bb / c | Da
B → Bb / c | Da
C → c | Da | Bb
D → c | Da | Bb
Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.

2. For every rhs of length \(> 1 \), replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).

3. Replace every rhs of length \(> 2 \) by a series of productions, each with rhs of length 2. QED.
Example:

\[S \rightarrow CBcd \]
\[B \rightarrow b \]
\[C \rightarrow Cc \mid e \]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem: For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
A_i \rightarrow A_j x_j, \quad j > i \\
Z_i \rightarrow A_j x_j, \quad j \leq n \\
A_i \rightarrow a x_i
\]

where \(a \in T, \; x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow a x_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3}, \) etc until all productions are in the correct form.