Section: Turing Machines - Building Blocks

1. Given Turing Machines M1 and M2

Notation for

- Run M1
- Run M2

\[\text{M1} \rightarrow \text{M2} \]

z represents any symbol in
2. Given Turing Machines M_1 and M_2

M_1

M_2

$\rightarrow S \quad H \rightarrow S' \quad H'$

$\rightarrow M_1 \xrightarrow{x} M_2$

$\rightarrow S \quad H \xrightarrow{x;x,R} z; z; L \rightarrow S' \quad H'$

z represents any symbol in x is an element of
3. Given Turing Machines M1, M2, and M3

M1

[Diagram of M1]

M2

[Diagram of M2]

M3

[Diagram of M3]

x is an element of

y is any element except x from

z is any element from
More Notation for Simplifying Turing Machines

Suppose $\Gamma = \{a, b, c, B\}$

z is any symbol in Γ

x is a specific symbol from Γ

1. s - start
2. R - move right
3. L - move left
4. x - write x (and don’t move)
5. R_a - move right until you see an a
6. L_a - move left until you see an a

7. $R_{¬a}$ - move right until you see anything that is not an a

8. $L_{¬a}$ - move left until you see anything that is not an a

9. h - halt in a final state

10. $\overrightarrow{a,b} \{w\} \overrightarrow{w}$

If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string \(w \in \Sigma^+ \), \(\Sigma = \{a, b\} \).

If \(|w|\) is odd, then write a \(b \) at the end of the string. The tape head should finish pointing at the leftmost symbol of \(w \).

input: bab, output: babb
input: ba, output: ba

What is the running time? \(\Theta(n) \)
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$, $|w| > 0$

For each a in the string, append a b to the end of the string.

input: $ab abb b$, output: $ab abb b bb b$

The tape head should finish pointing at the leftmost symbol of w.

\[S \rightarrow \mathbf{b} \mathbf{R} a \rightarrow \mathbf{R} b b \mathbf{L} \mathbf{a} \]

\[\mathbf{c} \mathbf{h} \rightarrow \mathbf{B} \]

\[\rightarrow \mathbf{L} \mathbf{B} \mathbf{R} \mathbf{h} \]

input: $ab abb b$ $\Theta(n^2)$ cleanup
Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function \(f: D \rightarrow R \) is a TM M, which given input \(d \in D \), halts with answer \(f(d) \in R \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{align*}
\text{start with:} & \quad 111 + 1111 \\
\text{end with:} & \quad 1111111
\end{align*}
\]
Example: Copy a String, \(f(w) = w0w \), \(w \in \Sigma^* \), \(\Sigma = \{a, b, c\} \)

Denoted by \(C \)

\[
\begin{align*}
\text{start with:} & \quad \text{abac} \\
\quad & \uparrow \\
\text{end with:} & \quad \text{abac0abac} \\
\quad & \uparrow
\end{align*}
\]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

start with: $\underbrace{aaBbabca}_\uparrow$

end with: $\underbrace{aaBBbaca}_\uparrow$
Algorithm:

• remember symbol to the right and erase it

• for each symbol to the left do
 – shift the symbol one cell to the right

• replace first symbol erased

• move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba

end with: bacaBBba

(similar to S_R)
Example: Add unary numbers
This time use shift.

\[
\begin{array}{c}
1111 \\
\uparrow \\
11111111 \\
\uparrow
\end{array}
\]

Example: Multiply two unary numbers, \(f(x\cdot y) = x \cdot y \), \(x \) and \(y \) unary numbers. Assume \(x, y > 0 \).

\[
\begin{array}{c}
\text{start with:} \\
1111*11 \\
\uparrow \\
\text{end with:} \\
11111111 \\
\uparrow
\end{array}
\]