Section: LR Parsing

LR PARSING

LR(k) Parser

- bottom-up parser
- shift-reduce parser
- L means: reads input left to right
- R means: produces a rightmost derivation
- k - number of lookahead symbols

LR parsing process

- convert CFG to PDA
- Use the PDA and lookahead symbols
Convert CFG to PDA

The constructed NPDA:

- three states: s, q, f
 start in state s, assume z on stack
- all rewrite rules in state s, backwards
 rules pop rhs, then push lhs
 \((s,\text{rhs}) \in \delta(s,\lambda,\text{rhs})\)
 This is called a reduce operation.
- additional rules in s to recognize terminals
 For each \(x \in \Sigma, \ g \in \Gamma, \ (s,xg) \in \delta(s,x,g)\)
 This is called a shift operation.
- pop S from stack and move into state q
- pop z from stack, move into f, accept.
Example: Construct a PDA.

S → aSb
S → b
LR Parsing Actions

1. shift
 transfer the lookahead to the stack

2. reduce
 For $X \rightarrow w$, replace w by X on the stack

3. accept
 input string is in language

4. error
 input string is not in language

LR(1) Parse Table

- Columns:
 terminals, $\$ and variables

- Rows:
 state numbers: represent patterns in a derivation
LR(1) Parse Table Example

1) $S \rightarrow aSb$
2) $S \rightarrow b$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>$</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s2</td>
<td>s3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>s5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>r1</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

Definition of entries:

- sN - shift terminal and move to state N
- N - move to state N
- rN - reduce by rule number N
- acc - accept
- blank - error
state = 0
push(state)
read(symbol)
entry = T[state,symbol]
while entry.action ≠ accept do
 if entry.action == shift then
 push(symbol)
 state = entry.state
 push(state)
 read(symbol)
 else if entry.action == reduce then
 do 2*size_rhs times {pop()}
 state := top-of-stack()
 push(entry.rule.lhs)
 state = T[state, entry.rule.lhs]
 push(state)
 else if entry.action == blank then
 error
 entry = T[state, symbol]
end while
if symbol ≠ $ then error
Example:

Trace aabb

\[
\begin{array}{ccccccc}
\text{S:} & z & z & z & z & z & S & S \\
\text{L:} & a & a & b & b & b & b & b & S & S \\
\text{A:} & sh \\
\text{T(\text{a,b})} = 4 \\
\end{array}
\]
To construct the LR(1) parse table:

- Construct a dfa to model the top of the stack
- Using the dfa, construct an LR(1) parse table

To Construct the DFA

- Add $S' \rightarrow S$
- place a marker “_” on the rhs $S' \rightarrow _S$
- Compute $\text{closure}(S' \rightarrow _S)$.

 Def. of closure:

1. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\}$ if x is a terminal.

2. $\text{closure}(A \rightarrow v_{xy}) = \{A \rightarrow v_{xy}\} \cup (\text{closure}(x \rightarrow _w) \text{ for all } w \text{ if } x \text{ is a variable.}}$
• The closure($S' \rightarrow _S$) is state 0 and “unprocessed”.

• Repeat until all states have been processed

 – unproc = any unprocessed state

 – For each x that appears in $A \rightarrow u_xv$ do

 * Add a transition labeled “x” from state “unproc” to a new state with production $A \rightarrow u_xv$

 * The set of productions for the new state are: closure($A \rightarrow u_xv$)

 * If the new state is identical to another state, combine the states Otherwise, mark the new state as “unprocessed”

• Identify final states.

Mark rule with marker at end

Reduce rule
Example: Construct DFA

(0) $S' \rightarrow S$

(1) $S \rightarrow aSb$

(2) $S \rightarrow b$

Input: aabbb
Backtracking through the DFA

Consider aabbb

- Start in state 0.
- Shift “a” and move to state 2.
- Shift “a” and move to state 2.
- Shift “b” and move to state 3. Reduce by “S → b” Pop “b” and Backtrack to state 2. Shift “S” and move to state 4.
- Shift “b” and move to state 5. Reduce by “S → aSb” Pop “aSb” and Backtrack to state 2. Shift “S” and move to state 4.
- Shift “b” and move to state 5. Reduce by “S → aSb” Pop “aSb” and Backtrack to state 0.
Shift “S” and move to state 1.

- Accept. aabbb is in the language.
To construct LR(1) table from diagram:

1. If there is an arc from state1 to state2

 (a) arc labeled x is terminal or $\in T[state1, x] = sh state2$

 (b) arc labeled X is nonterminal
 $T[state1, X] = state2$

2. If state1 is a final state with $X \rightarrow w$

 For all a in FOLLOW(X),
 $T[state1,a] = reduce by X \rightarrow w$

3. If state1 is a final state with $S' \rightarrow S$

 $T[state1,\$] = accept$

4. All other entries are error
Example: LR(1) Parse Table

(0) $S' \rightarrow S$
(1) $S \rightarrow aSb$
(2) $S \rightarrow b$

Here is the LR(1) Parse Table with extra information about the stack contents of each state.

<table>
<thead>
<tr>
<th>Stack contents</th>
<th>State number</th>
<th>Terminals</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(empty)</td>
<td>0</td>
<td>s_2</td>
<td>s_3</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>aa^*</td>
<td>2</td>
<td>s_2</td>
<td>s_3</td>
</tr>
<tr>
<td>aa^*b+b</td>
<td>3</td>
<td>r_2</td>
<td>r_2</td>
</tr>
<tr>
<td>aa^*S</td>
<td>4</td>
<td>s_5</td>
<td></td>
</tr>
<tr>
<td>aa^*Sb</td>
<td>5</td>
<td>r_1</td>
<td>r_1</td>
</tr>
</tbody>
</table>

1) $S \rightarrow aSb$
2) $S \rightarrow b$
Actions for entries in LR(1) Parse table $T[\text{state, symbol}]$

Let entry = $T[\text{state, symbol}]$.

- If symbol is a terminal or $\$$
 - If entry is “shift statei”
 push lookahead and statei on the stack
 - If entry is “reduce by rule $X \rightarrow w$”
 pop w and k states (k is the size of w) from the stack.
 - If entry is “accept”
 Halt. The string is in the language.
 - If entry is “error”
 Halt. The string is not in the language.
• If symbol is nonterminal
 We have just reduced the rhs of a production $X \rightarrow w$ to a symbol. The entry is a state number, call it $state_i$. Push $T[state_i, X]$ on the stack.

 this is correct!
Constructing Parse Tables for CFG’s with λ-rules

$A \rightarrow \lambda$ written as $A \rightarrow \lambda$

Example

$$S \rightarrow \text{ddX}$$
$$X \rightarrow \text{aX}$$
$$X \rightarrow \lambda$$

Add a new start symbol and number the rules:

\begin{align*}
(0) & \quad S' \rightarrow S \\
(1) & \quad S \rightarrow \text{ddX} \\
(2) & \quad X \rightarrow \text{aX} \\
(3) & \quad X \rightarrow \lambda
\end{align*}

Construct the DFA:
Construct the LR(1) Parse Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>d</th>
<th>$</th>
<th>S</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>r3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>r3</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>n2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Possible Conflicts:

1. Shift/Reduce Conflict
 Example:

 \[
 A \rightarrow ab \\
 A \rightarrow abcd
 \]

 In the DFA:

 \[
 A \rightarrow ab_ \\
 A \rightarrow ab_ \ cd
 \]

2. Reduce/Reduce Conflict
 Example:

 \[
 A \rightarrow ab \\
 B \rightarrow ab
 \]

 In the DFA:

 \[
 A \rightarrow ab_ \\
 B \rightarrow ab_
 \]

3. Shift/Shift Conflict