Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F)\)

where

- \(Q\) is finite set of states
- \(\Sigma\) is tape (input) alphabet
- \(q_0\) is initial state
- \(F \subseteq Q\) is set of final states.
- \(\delta: Q \times \Sigma \rightarrow Q\)
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]

\[\left(\{ q_0, q_1 \}, \{ 0, 1 \}, \delta, q_0, \{ q_1 \} \right) \]

\[\delta \text{ below, or the arcs in the transition diagram} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>q1</td>
<td>q0</td>
</tr>
<tr>
<td>q1</td>
<td>q1</td>
<td>q0</td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0, 1) = q_0 \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = \(\delta(q,s) \)
 s = next symbol to the right on tape
if q \in F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0

2) 1 0 0

3) 1 0 0

4) 1 0 0
Definition:

\[\delta^*(q, \lambda) = q \]

\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,

\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \{ b^n a \mid n > 0, b \neq \varepsilon \} \)

\[
\begin{array}{c}
q_0 & \xrightarrow{b} & q_1 & \xrightarrow{a} & q_2 \\
\xleftarrow{a} & & & & \\
trap & & & \xleftarrow{b} & \\
\xleftarrow{a,b} & & & & \\
\end{array}
\]
Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s} \} \]
Same DFA in JFLAP

To trace through one string
To test multiple inputs:
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.

δ: Q × (Σ ∪ {λ}) → 2^Q
Example

Note: In this example $\delta(q_0, a) =$

$L =$
Example

$L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}$
Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

$\delta^*(q_0, ab) =$

$\delta^*(q_0, aba) =$

Definition: For an NFA M,

$L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA
\(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\[Q_D = \]

\[F_D = \]

\[\delta_D : \]
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A = \{q_i, q_j, \ldots q_k\}$
 with missing edge for $a \in \Sigma$

 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$

 (c) Add state B if it doesn’t exist

 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider L={aaab, bbaa}

R1awb(L)=

Example 2: Consider ∑ = {a, b}, L = \{w ∈ ∑* | w has an even number of a’s and an even number of b’s\}

R1awb(L)=

Proof:
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L={aaab, bbba}

TruncPreb(L)=

Example 2: Consider L =
{(bba)^n | n > 0}

TruncPreb(L)=

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states \(p \) and \(q \) are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states \(p \) and \(q \) are distinguishable if \(\exists \ w \in \Sigma^* \ s.t. \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \ OR \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: