Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q
Example: DFA that accepts even binary numbers.

Transition Diagram:

M = (Q, Σ, δ, q₀, F) =

(∅, q₀, δ₀, q₁, F₀)

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₁</td>
<td>q₀</td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) = q₁
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0

q0
q1

2) 1 0 0

q0
q1

3) 1 0 0

q0
q1

4) 1 0 0

q0
q1

(box with program)

(transition diagram inside box)
Definition:
\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally, \(L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \} \)
Trap State

Example: \(L(M) = \exists b^n a \mid n > 0 \)
Example:

$L = \{ w \in \Sigma^* \mid w \text{ has an even number of a's and an even number of b's} \}$
Same DFA in JFLAP

To trace through one string
To test multiple inputs:
Example: DFA that accepts even binary numbers that have an even number of 1’s.

accept

even no. of 1’s
Definition: A language is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2
Nondeterministic Finite Automata (or Accepter)

Definition
An NFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.

δ : Q × (Σ ∪ {λ}) → 2^Q
Example

Note: In this example $\delta(q_0, a) = q_1, q_3$

$L = \{aaa^n b a b^n | n \geq 0\}$
Example

\[L = \{ (ab)^n \mid n > 0 \} \cup \{ a^n b \mid n > 0 \} \]

\[
\begin{align*}
&\text{ababab} \\
&\text{aaaaa}b
\end{align*}
\]
Definition \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\[
\delta^*(q_0, ab) = \{ q_5, q_6, q, \overline{Z} \}
\]

\[
\delta^*(q_0, aba) = \{ q_2, \overline{Z} \}
\]

Definition: For an NFA \(M \),

\[
L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}
\]
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

\[
Q_D = \{ \Sigma^*q \}_{q \in Q_N} \\
F_D = \{ \Sigma^*q \mid \exists q_i \in Q \text{ with } q_i \in F_N \} \\
\delta_D : Q_D \times \Sigma \to Q_D
\]
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge
 (a) Choose a state $A = \{q_i, q_j, ... q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup ... \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Properties and Proving - Problem 1

Consider the property

Replace_one_a_with_b or R1awb for short. If L is a regular, prove

R1awb(L) is regular.

The property R1awb applied to a

language L replaces one a in each

string with a b. If a string does not

have an a, then the string is not in

R1awb(L).

Example 1: Consider L={aaab, bbba}

R1awb(L)= \{baab, bbaa, baab, bbba\}

Example 2: Consider \(\Sigma = \{a, b\} \), L =

\{w \in \Sigma^* | w \text{ has an even number of a’s and an even number of b’s}\}

R1awb(L)= \{odd \ a’s, odd b’s\}

Proof:
Proof: Assume L is regular.

There exists a DFA M such that $L = L(M)$,

$M = (Q, \Sigma, \delta, q_0, F)$

Construct an NFA M' from M such that $\lambda(L) = R\lambda w b(L)$.

Make a copy of M called $M' = (Q', \Sigma, \delta', q'_0, F')$.
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L={aaab, bbba}
TruncPreb(L)=

Example 2: Consider L =
{(bbba)⁰ | n > 0}
TruncPreb(L)=

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR} \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: